• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SOD1 Aggregation : Relevance of thermodynamic stability

Lang, Lisa January 2017 (has links)
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the upper and lower motor neurons causing muscle atrophy and paralysis followed by death. Aggregates containing superoxide dismutase (SOD1) are found as pathological hallmark in diseased ALS patients. Consequently ALS is regarded as a protein misfolding disorder like Alzheimer’s disease and Parkinson’s disease. So far, little is known about the cause and mechanism behind SOD1 aggregation but the inherent property of all polypeptide chains to form stable aggregated structures indicates that the protein misfolding diseases share a common mechanism. Our results show that SOD1 aggregation starts from the globally unfolded state, since fibrillation is fastest at full occupancy of denatured protein induced either by chemical denaturation or mutation. Even so, the fibrillation rate shows a surprisingly weak dependence on the concentration of globally unfolded SOD1 indicating fibril fragmentation as the dominant mechanism for aggregate formation. This is further supported by the observation that the SOD1 sample has to be mechanically agitated for fibrillation to occur.  Interestingly, we observe a similar SOD1 aggregation behaviour in vivo, where the survival times of ALS transgenic mice correlates with mutant stability, and aggregate growth depends weekly on the concentration of unfolded monomer. Additionally, in-cell NMR measurements reveal that in live cells the thermodynamic equilibrium is shifted towards the unfolded state of SOD1, which is also more fully extended than in vitro. This suggests that the globally unfolded aggregation competent protein is more abundant in the crowded environment in vivo than dilute in vitro conditions. Finally, antibody analysis of aggregates from ALS transgenic mice reveals the existence of aggregate strains involving different parts of the protein depending on mutation, which may offer an explanation for the various disease phenotypes observed in ALS. Altogether these findings provide important clues for understanding SOD1 aggregation with implications for ALS, as well as other protein misfolding diseases.
2

Overexpression of human Cu/Zn Superoxide Dismutase in Mice; The Effect of Increase Superoxide Scavenging on Autonomic Control of the Heart.

Hatcher, Jeffrey 01 January 2015 (has links)
Dysregulation of the autonomic cardiovascular control is a complication of diseases including diabetes, hypertension, sleep apnea, and aging. A common factor in these conditions is an increase in reactive oxygen species (ROS) in neural, cardiac, and endothelial tissues. Cu/Zn superoxide dismutase (SOD1) is an intracellular anti-oxidant enzyme that catalyzes dismutation of the superoxide anion (O2.-) to hydrogen peroxide (H2O2). Expression and function of this enzyme are diminished in pathologies that impair cardiovascular autonomic control. This study employed mice overexpressing a transgene for human SOD1 (hSOD1) to determine if its overexpression would alter autonomic regulation of BP, HR, and BRS in healthy animals, and if this animal line (C57B6SJL-Tg (SOD1)2 Gur/J) could be used in future studies to determine if hSOD1 overexpression can preserve cardiac autonomic function in disease models. To accomplish this aim, using anesthetized SOD1 and C57 (control) mice, we recorded HR, and aortic depressor nerve (ADN) activity changes in response to pharmacologically-induced BP changes in order to measure baroreflex and baroreceptor sensitivity, respectively. In order to identify any alterations in central, efferent, and cardiac components of the baroreflex arc, we electrically stimulated the left ADN and left cervical vagus and compared the reductions in BP and HR between the C57 and SOD1 mice. Time- and frequency-domain analysis of heart rate variability (HRV) was performed using pulse pressure recordings prior to pharmacologic or surgical procedures. We found that hSOD1 overexpression in the SOD1 mouse line, in comparison to C57 controls did not significantly affect resting HR (C57: 558 ± 8 vs. SOD1:553 ± 13 beats-per-minute) or blood pressure (C57: 88.8 ± 2.9 vs.SOD1: 85.8 ± 2.1 mmHg). hSOD1 overexpression did not affect the decrease in average mean arterial pressure (MAP) following injection of sodium nitroprusside (SNP) (C57: 38.7 ± 1.4 vs. SOD1: 39.5 ± 1.3 mmHg) or increase in average MAP (C57: 135.8 ± 3.1 vs. SOD1: 136.6 ± 3.5 mmHg) following injection of phenylephrine (PE). BRS, as measured by the averaged regression lines for ΔHR/ΔMAP for the SNP-induced tachycardic baroreflex (C57: 0.57 ± 0.06 bpm/mmHg, SOD1: 0.61 ± 0.08 bpm/mmHg)) and the PE-induced bradycardic baroreflex (C57: -2.9 ± 0.57 bmp/mmHg, SOD1: -4.3 ± 0.84 bpm/mmHg) are not significantly different between C57 and SOD1. Baroreceptor activation showed a significant increase in gain (C57: 5.4 ± 0.3 vs. SOD1: 7.4 ± 0.5 %/mmHg, P < 0.01) in the SOD1 transgenic mice. Heart rate depression in response to electrical stimulation of the left ADN and cervical vagus was comparable between C57 and SOD1, though MAP reduction in response to ADN stimulation is slightly, but significantly increased at 50 Hz in SOD1 animals. Time- domain analysis of HRV did not reveal any significant difference in beat-to-beat variability between SOD1 and C57 (SDNN: C57: 2.78 ± 0.20, SOD1: 2.89 ± 0.27), although frequency-domain analysis uncovered a significant reduction in the low-frequency power component of the HRV power spectral distribution (C57: 1.19 ± 0.11, SOD1: 0.35 ± 0.06, P < 0.001). This study shows that although hSOD1 overexpression does not affect overall baroreflex function, it does potentiate baroreceptor sensitivity and brain stem control of arterial pressure, and reduces low-frequency beat-to-beat variations in HR, without affecting total HRV.
3

Conseqüências da expressão da enzima Cu,Zn-superóxido dismutase (SOD1) e sua mutante G93A em neuroblastomas. Implicações para a esclerose lateral amiotrófica / Some consequences of SOD1 and G93A mutant expression in neuroblastomas. Implications for amyotrophic lateral sclerosis (ALS).

Cerqueira, Fernanda Menezes 22 March 2007 (has links)
Cerca de 20 % dos casos familiares de esclerose lateral amiotrófica (ELAf) são causados por mutações na enzima Cu,Zn-superóxido dismutase (SOD1). Inicialmente se supôs que as enzimas mutantes teriam a atividade SOD comprometida, entretanto isto não foi comprovado. Atualmente, considera-se que as enzimas mutantes adquiram propriedades tóxicas. Quais seriam estas propriedades e como levariam à degeneração do neurônio motor são questões ainda não respondidas. Neste trabalho, comparamos neuroblastomas humanos transfectados com SOD1 G93A associada à ELAf (SH-SY5YG93A), e SOD1 selvagem (SH-SY5YWT) com células parentais (SH-SY5Y) em relação ao crescimento, viabilidade, produção basal de oxidantes, atividades SOD e peroxidásica e modificações estruturais da SOD. As células transfectadas apresentaram aumento na taxa de crescimento e na produção basal de oxidantes. As células SH-SY5YWT e SH-SY5YG93A mantiveram a expressão de SOD1 e atividade consistente com o aumento esperado de duas vezes, em estágios iniciais de cultura. A atividade peroxidásica do homogenato da célula SH-SY5YG93A foi maior. Após quatro semanas, a linhagem SH-SY5YG93A manteve a expressão de SOD1, mas as atividades dismutásica e peroxidásica diminuíram. A expressão de SOD1 aumentou a proporção de formas alteradas de SOD1, como enzima reduzida, multímeros formados por ponte dissulfeto e formas insolúveis em detergente, particularmente na linhagem SH-SY5YG93A. Entre estas formas insolúveis, identificamos um dímero covalente de SOD. Estas formas alteradas provavelmente são responsáveis pela ativação do proteassomo e estresse do retículo endoplasmático, verificados nas células transfectadas. Concluindo, a superexpressão da SOD1 foi suficiente para elevar as formas imaturas e oligomerizadas de SOD1 e a oxidação basal, e a mutação G93A ressaltou estes processos. / Some familial ALS (fALS) are caused by mutations in the Cu,Zn-superoxide dismutase enzyme (SOD1). It was thought that the mutated enzymes would have impaired SOD activity, but this has not been corroborated so far. Presently, it is more accepted that the mutated enzymes acquire a new toxic function. What this new toxic function is and how it relates to the degeneration of motor neurons remains debatable. Here, we compared human neuroblastoma cells transfected with fALS mutant G93A (SH-SY5YG93A) or wild-type SOD1 (SH-SY5YWT) with parent cells (SH-SY5Y) in regard to growth, viability, basal oxidant production, SOD and peroxidase activities, and SOD forms. Transfected cells presented increased growth rate and basal oxidant production. SH-SY5YWT and SH-SY5YG93A cells in early culture stage showed SOD expression and activity consistent with the expected two-fold increase; SH-SY5YWT homogenates showed increased peroxidase activity. After four weeks, SH-SY5YG93A maintained SOD1 expression levels but peroxidase and dismutase activities were lower. SOD1 expression increased the levels of altered SOD1 forms such as the reduced enzyme, disulfide multimers and detergent-insoluble forms, particularly in SH-SY5YG93A cells. Among the insoluble forms a covalent SOD dimer was identified. These altered SOD forms are probably responsible for proteasome activation and endoplasmatic reticulum stress response verified in transfected cells. In conclusion, SOD1 over-expression was sufficient to increase intracellular immature and oligomerized SOD1 forms and basal oxidation and the G93A mutation enhanced these processes.
4

Conseqüências da expressão da enzima Cu,Zn-superóxido dismutase (SOD1) e sua mutante G93A em neuroblastomas. Implicações para a esclerose lateral amiotrófica / Some consequences of SOD1 and G93A mutant expression in neuroblastomas. Implications for amyotrophic lateral sclerosis (ALS).

Fernanda Menezes Cerqueira 22 March 2007 (has links)
Cerca de 20 % dos casos familiares de esclerose lateral amiotrófica (ELAf) são causados por mutações na enzima Cu,Zn-superóxido dismutase (SOD1). Inicialmente se supôs que as enzimas mutantes teriam a atividade SOD comprometida, entretanto isto não foi comprovado. Atualmente, considera-se que as enzimas mutantes adquiram propriedades tóxicas. Quais seriam estas propriedades e como levariam à degeneração do neurônio motor são questões ainda não respondidas. Neste trabalho, comparamos neuroblastomas humanos transfectados com SOD1 G93A associada à ELAf (SH-SY5YG93A), e SOD1 selvagem (SH-SY5YWT) com células parentais (SH-SY5Y) em relação ao crescimento, viabilidade, produção basal de oxidantes, atividades SOD e peroxidásica e modificações estruturais da SOD. As células transfectadas apresentaram aumento na taxa de crescimento e na produção basal de oxidantes. As células SH-SY5YWT e SH-SY5YG93A mantiveram a expressão de SOD1 e atividade consistente com o aumento esperado de duas vezes, em estágios iniciais de cultura. A atividade peroxidásica do homogenato da célula SH-SY5YG93A foi maior. Após quatro semanas, a linhagem SH-SY5YG93A manteve a expressão de SOD1, mas as atividades dismutásica e peroxidásica diminuíram. A expressão de SOD1 aumentou a proporção de formas alteradas de SOD1, como enzima reduzida, multímeros formados por ponte dissulfeto e formas insolúveis em detergente, particularmente na linhagem SH-SY5YG93A. Entre estas formas insolúveis, identificamos um dímero covalente de SOD. Estas formas alteradas provavelmente são responsáveis pela ativação do proteassomo e estresse do retículo endoplasmático, verificados nas células transfectadas. Concluindo, a superexpressão da SOD1 foi suficiente para elevar as formas imaturas e oligomerizadas de SOD1 e a oxidação basal, e a mutação G93A ressaltou estes processos. / Some familial ALS (fALS) are caused by mutations in the Cu,Zn-superoxide dismutase enzyme (SOD1). It was thought that the mutated enzymes would have impaired SOD activity, but this has not been corroborated so far. Presently, it is more accepted that the mutated enzymes acquire a new toxic function. What this new toxic function is and how it relates to the degeneration of motor neurons remains debatable. Here, we compared human neuroblastoma cells transfected with fALS mutant G93A (SH-SY5YG93A) or wild-type SOD1 (SH-SY5YWT) with parent cells (SH-SY5Y) in regard to growth, viability, basal oxidant production, SOD and peroxidase activities, and SOD forms. Transfected cells presented increased growth rate and basal oxidant production. SH-SY5YWT and SH-SY5YG93A cells in early culture stage showed SOD expression and activity consistent with the expected two-fold increase; SH-SY5YWT homogenates showed increased peroxidase activity. After four weeks, SH-SY5YG93A maintained SOD1 expression levels but peroxidase and dismutase activities were lower. SOD1 expression increased the levels of altered SOD1 forms such as the reduced enzyme, disulfide multimers and detergent-insoluble forms, particularly in SH-SY5YG93A cells. Among the insoluble forms a covalent SOD dimer was identified. These altered SOD forms are probably responsible for proteasome activation and endoplasmatic reticulum stress response verified in transfected cells. In conclusion, SOD1 over-expression was sufficient to increase intracellular immature and oligomerized SOD1 forms and basal oxidation and the G93A mutation enhanced these processes.

Page generated in 0.0697 seconds