• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 6
  • 3
  • 3
  • 1
  • Tagged with
  • 46
  • 15
  • 13
  • 12
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A study of low temperature superplasticity of ultrafined-grained AZ31 magnesium alloy

Lin, Yi-rong 26 August 2010 (has links)
none
12

Development and Analysis of Low Temperature and High Strain Rate Superplasticity in High-Ratio Extruded AZ31 Mg Alloys

Lin, Hsuan-kai 17 June 2005 (has links)
There have been numerous efforts in processing metallic alloys into fine-grained materials, so as to exhibit high strain rate superplasticity (HSRSP) and/or low temperature superplasticity (LTSP). The current study is to apply the most simple and feasible one-step extrusion method on the commercial AZ31 magnesium billet to result in low temperature and high strain rate superplasticity (LT&HSRSP). The one-step extrusion was undertaken using a high extrusion ratio at 250-350oC, and the grain size after one-step extrusion became ~1-4 mm. The processed AZ31 plate exhibited high room temperature tensile elongation up to 50%, as well as superior LTSP and/or HSRSP up to 1000%. Meanwhile, the AZ31 alloy was also conducted by equal-channel angular pressing (ECAP). It is demonstrated that an elongation of 461% may be attained at a temperature of 150oC, equivalent to 0.46 Tm where Tm is the absolute melting temperature. This result clearly demonstrates the potential for achieving low temperature superplasticity. A detailed investigation, using x-ray diffraction (XRD), electron back scattering diffraction (EBSD), and transmission electron microscopy / selected area diffraction (TEM/SAD), revealed different textures in the as-extruded and as-ECAP bars. These dominant textures were characteristic of <10 0>//ED in the extruded bars and < 76>//ED in the ECAP condition, where ED is the extrusion direction. The results show that the basal planes tend to lie parallel to the extrusion axis in the extruded bars but there is a rearrangement during ECAP and the basal planes become reasonably aligned with the theoretical shearing plane. As to the extruded plates, the {0002} planes tended to lie on the plane that contains the extrusion axis. At different tensile temperatures, different deformation mechanisms would be dominant. Over the lower loading temperatures within 150-200oC, the true strain rate sensitivity, mt, after extracting the threshold stress is determined to be 0.28, suggesting that power-law dislocation creep but the Qt value is not related to any creep mechanism. It should be partly due to thermal activated dislocation slip mechanism. However, more data need to be tested systematically this part in the future study in order to define the correct deformation mechanism. As to the loading temperatures over 250-300oC, the mt value and the true activation energy for the extruded specimens are calculated to be ~0.4-0.5 and ~90-100 kJ/mol, implying that the major deformation mechanism is grain boundary sliding plus minor solute drag creep, with the rate controlling diffusion step being the magnesium grain boundary diffusion.
13

DEVELOPMENT AND ANALYSIS OF FINE-GRAINED 6061 Al BASED MATERIALS ON HIGH STRAIN RATE SUPERPLASTICITY

Wang, Tsung-Ting 07 October 2000 (has links)
FOUR 6061 AL SYSTEMS WERE PREPARED, INCLUDING THE CAST 6061 ALLOY BY TMT OR ECAP, THE PM 6061 ALLOY, AND THE MODIFIED PM 6061 ALLOY ADDED WITH 1 VOL% NANO-SIO2. THE MODIFIED 6061/1%NANO-SIO2 ALLOY POSSESSED A GRAIN SIZE~0.5 UM AND MAINTAINED FINE GRAIN SIZE UPON LOADING AT HIGH TEMPERATURE, RESULTING IN HSRS OVER 300% AT 550-590 OC AND 1-5X10-1 S-1. THE GRAIN BOUNDARY MISORIENTATION DISTRIBUTION IN THE MODIFIED 6061/1%NANO-SIO2 ALLOY WAS ALSO MOST RANDOM COMPARED WITH OTHER THREE UNMODIFIED 6061 ALLOYS. THE CURRENT RESULTS SUGGEST THAT THE ADDITION OF A SMALL AMOUNT OF CHEAPER SIO2 OR AL2O3 NANO-PARTICLES INTO COMMERCIAL AL ALLOYS CAN EFFECTIVELY SUPPRESS GRAIN GROWTH AT HIGH TEMPERATURES AND ENHANCE HSRS, SIMILAR TO THE EFFECTS BY ADDING 15-25VOL% MICRO-SIZED SIC OR SI3N4 REINFORCING PARTICULATES OR WHISKERS.
14

The superplasticity of eutectic lead-bismuth alloy

Lo, Chien-ming, 1941- January 1967 (has links)
No description available.
15

Superplasticity and anelasticity in fine-grained Sn-Pb alloys

Schneibel, Joachim H. January 1979 (has links)
Mechanisms which may play a role in superplastic deformation (grain strain mechanisms, grain boundary sliding (GBS) mechanisms) are reviewed. Two well-known lattice dislocation mechanisms are re-evaluated for grain boundary dislocations (GBDs). The manner in which the deformation mechanisms interact, or are inhibited or obscured, is discussed. Mechanisms of anelastic deformation are outlined, with particular reference to fine-grained materials. Expressions for anelastic recovery caused either by grain boundary (GB) tension or by the relaxation of GBD pile-ups are derived. The plastic properties of Sn-38.1w/o Pb and Sn-2w/o Pb are measured. They are similar in both alloys. No threshold stress for plastic deformation is detected, for stresses and strain rates as low as 0.IMPa and 10<sup>-10</sup>s<sup>-1</sup> respectively. The presence of GB diffusion creep (Coble creep) is established experimentally in Sn-2w/o Pb with grain sizes ≥ 50μm. Coble creep is inhibited for small grain sizes (~10μm). The inhibition is explained by GBS caused by GBDs. In disagreement with the measurements, high threshold stresses are predicted for Sn-38.1w/o Pb. This implies that GBD line tensions are lower than those of lattice dislocations. The anelastic properties of Sn-2w/o Pb and Sn-38.1w/o Pb are determined from the elastic after-effect (anelastic recovery after unloading). They are remarkable: anelastic contractions larger than 0.2% and relaxation strengths (= ratio of anelastically recovered to elastically recovered strain) in excess of 100 are found. The anelastic strains are approximately proportional to the stress and the inverse grain size. A wide range of relaxation times (~ 6 decades) is observed. A mechanism based on the relaxation of GBD pile-ups is in qualitative agreement with the measured anelasticity. The high measured relaxation strengths, however, imply that the interaction between GBDs is much weaker (~ 2 orders of magnitude) than that between lattice dislocations. This could be due to a relatively low self-energy of GBDs and would be in qualitative agreement with the low GBD line tensions suggested above. The influence of anelasticity on transients (e.g. stress relaxation, dip test) is investigated using a rheological model with three Voigt elements (anelasticity) and a nonlinear dashpot (plasticity). Using independently determined plastic and anelastic parameters the 4-th order differential equa tion corresponding to the model is solved numerically for several examples. Measured transients are much more accurately predicted with the present model than with models neglecting anelasticity.
16

The deformation characteristics and microstructural dynamics of an Al-10Mg-0.1Zr alloy

Buckley, James F. January 1992 (has links)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, June 1992. / Thesis Advisor: McNelley, T.R. "June 1992." Description based on title screen as viewed on April 16, 2009. Includes bibliographical references (p. 52-53). Also available in print.
17

Ionic mobility and superplasticity in ceramics /

Vilette, Anne L., January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 84-86). Also available via the Internet.
18

High-temperature deformation of Al₂O₃/Y-TZP particulate composites and particulate laminates

Wang, Jue, January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
19

Low Temperature Superplasticity and Strain Induced Phase Transformation in Ti3Al Based Alloy

Yang, Kai-Lin 23 December 2003 (has links)
Ti3Al based intermetallic alloys are attractive for aerospace and aircraft applications due to their superior high temperature properties. Excellent high temperature superplasticity in the Ti3Al-Nb based alloy has been widely published. However, the alloys become brittle and hard to deform at temperatures below 600oC so that low temperature superplasticity is difficult to develop. In the current super
20

Study of cavitation and failure mechanisms of a superplastic 5083 aluminum alloy /

Boydon, Juanito F. January 2003 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, September 2003. / Thesis Advisor(s): Terry R. McNelley. Includes bibliographical references (p. 63-65) Also available online.

Page generated in 0.0701 seconds