Spelling suggestions: "subject:"superposition coding"" "subject:"superposition boding""
1 |
Improved Techniques for Retransmission and Relaying in Wireless SystemsTumula, Chaitanya V. K. January 2011 (has links)
The last three decades have seen significant advances in the wireless communication field. As the data rates of wireless systems are increasing, the demand for mobile services also is increasing rapidly. Like other natural resources, radio spectrum suitable for mobile wireless communications is also limited. In order to keep up with this ever increasing demand, there is a requirement of new signal processing algorithms. Diversity is a technique used in wireless systems to combat the effects of fading and thereby improve reliability of data transfer. There are many ways in which algorithms can exploit diversity in wireless channels. Hybrid-automatic repeat request (H-ARQ) schemes and relaying mechanisms are two such diversity extracting techniques. Even though these diversity achieving techniques have been well understood in theory, there are many ways in which one can optimize these techniques for specific application scenarios.In this thesis, we focus on improving the performance of retransmission schemes and relaying systems. In the first part of the thesis, we improve the performance of H-ARQ schemes in the 3GPP- long term evolution (LTE) system by improving the performance of feedback signaling. We employ complex-field coding to extract the inherent frequency diversity available in the resources. Next, we provide a sub-optimal solution to the outage-optimal power allocation problem in incremental redundancy based H-ARQ system, whose performance is practically the same as that of the optimal solution. In the later part of the thesis, we propose a retransmission scheme based on superposition coding (SPC) for the symmetric relaying scenario. We provide packet error probability (PEP) expressions and solutions for the optimal fraction of power allocated for the partners' data. Finally, we study the optimal bits-to-symbol mappings for SPC and its effect on an H-ARQ scheme and the symmetric relaying scenario using SPC.
|
2 |
Layered Adaptive Modulation and Coding For 4G Wireless NetworksWei, Zhenhuan 18 January 2011 (has links)
Emerging 4G standards, such as WiMAX and LTE have adopted the proven technique of Adaptive Modulation and Coding (AMC) to dynamically react to channel fluctuations while maintaining bit-error rate targets of the transmission. This scheme makes use of the estimated channel state indication (CSI) to efficiently utilize channel capacity for next transmission, but it brings with it the stale CSI problem due to the frequently channel fluctuations. As its objective, this thesis focuses on mitigating the vicious effect of stale CSI by proposing a novel framework that incorporate AMC with layered transmission through Superposition Coding (SPC) is introduced. A layered multi-step finite-state Markov chain model (FSMC) is developed under this framework, to effectively assist the system in selecting the optimal modulation and coding scheme as well as the power allocated for each layer in every multi-resolution unicast transmission. Extensive simulations are conducted to verify the proposed framework and compare its performance with other counterparts. The effects of changing key parameters, such as the complexity factor and step size, are also investigated to get close to real world performance. Results demonstrate that the proposed framework can achieve better spectrum efficiency than similar counterparts, due to its improved robustness to the stale CSI problem for each multi-resolution modulated transmission, also these show that the performance of two-layer scheme is good enough for layer allocation, without need of more layers.
|
3 |
Symmetrical Multilevel Diversity Coding with an All-Access EncoderMarukala, Neeharika 2012 May 1900 (has links)
Symmetrical Multilevel Diversity Coding (SMDC) is a network compression problem for which a simple separate coding strategy known as superposition coding is optimal in terms of achieving the entire admissible rate region. Carefully constructed induction argument along with the classical subset entropy inequality of Han played a key role in proving the optimality. This thesis considers a generalization of SMDC for which, in addition to the randomly accessible encoders, there is also an all-access encoder. It is shown that superposition coding remains optimal in terms of achieving the entire admissible rate region of the problem. Key to our proof is to identify the supporting hyperplanes that define the boundary of the admissible rate region and then build on a generalization of Han's subset inequality. As a special case, the (R0,Rs) admissible rate region, which captures all possible tradeoffs between the encoding rate, R0, of the all-access encoder and the sum encoding rate, Rs, of the randomly accessible encoders, is explicitly characterized. To provide explicit proof of the optimality of superposition coding in this case, a new sliding-window subset entropy inequality is introduced and is shown to directly imply the classical subset entropy inequality of Han.
|
4 |
Layered Adaptive Modulation and Coding For 4G Wireless NetworksWei, Zhenhuan 18 January 2011 (has links)
Emerging 4G standards, such as WiMAX and LTE have adopted the proven technique of Adaptive Modulation and Coding (AMC) to dynamically react to channel fluctuations while maintaining bit-error rate targets of the transmission. This scheme makes use of the estimated channel state indication (CSI) to efficiently utilize channel capacity for next transmission, but it brings with it the stale CSI problem due to the frequently channel fluctuations. As its objective, this thesis focuses on mitigating the vicious effect of stale CSI by proposing a novel framework that incorporate AMC with layered transmission through Superposition Coding (SPC) is introduced. A layered multi-step finite-state Markov chain model (FSMC) is developed under this framework, to effectively assist the system in selecting the optimal modulation and coding scheme as well as the power allocated for each layer in every multi-resolution unicast transmission. Extensive simulations are conducted to verify the proposed framework and compare its performance with other counterparts. The effects of changing key parameters, such as the complexity factor and step size, are also investigated to get close to real world performance. Results demonstrate that the proposed framework can achieve better spectrum efficiency than similar counterparts, due to its improved robustness to the stale CSI problem for each multi-resolution modulated transmission, also these show that the performance of two-layer scheme is good enough for layer allocation, without need of more layers.
|
5 |
Codage par superposition pour les communications par satellite / Superposition coding for satellite communicationsMéric, Hugo 29 November 2012 (has links)
Les systèmes de communication par satellite d’aujourd’hui reposent principalement sur le multiplexage temporel pour optimiser leurs performances. Chaque utilisateur utilise le canal pendant une fraction de temps connu. Pendant cette période, la modulation et le taux de codage sont choisis de manière à transmettre le plus d’information possible. En pratique, ce schéma est facile à mettre en œuvre ce qui justifie sa popularité. Cependant, il est désormais bien connu que la répartition temporelle n’est pas optimale en termes d’efficacité spectrale offerte aux récepteurs. En effet, la stratégie qui consiste à superposer des données offre de meilleures performances que le multiplexage temporel. C’est dans ce contexte que s’inscrit la problématique de cette thèse. Le travail réalisé propose des applications du codage par superposition dans le domaine des communications par satellite. Tout d’abord, nous étudions la modulation hiérarchique qui est une implémentation du codage par superposition au niveau de la modulation. Les performances de ce type de modulation sont évaluées d’un point de vue théorique et pratique. Dans un deuxième temps, nous quantifions l’amélioration en termes d’efficacité spectrale que peut apporter la modulation hiérarchique pour les systèmes de communication par satellite. Les standards de diffusion par satellite DVB-SH et DVB-S2 fournissent un cadre pratique. Nous montrons que des gains non négligeables sont envisageables selon la configuration du système. Le dernier point abordé concerne un système où des utilisateurs communiquent entre eux à l’aide d’un satellite qui sert de relais. Nous proposons un schéma de communication où plusieurs utilisateurs émettent en même temps en coordonnant leur puissance de transmission. Ainsi, les signaux vont naturellement se superposer. Les récepteurs utilisent deux mécanismes pour le décodage des signaux : le codage réseau couche physique et la démodulation de constellations superposées. Finalement, les gains de performance obtenus dans les différents domaines par le codage par superposition ouvrent des perspectives pour des travaux futurs. / Modern satellite communication systems mainly rely on time sharing to optimize the throughput. Each receiver uses the channel during a given fraction of time. During this period, the transmission parameters (i.e., the modulation and the coding rate) are chosen in order totransmit as much information as possible. The scheme is easy to implement which explains its popularity. However, it is today well established that time sharing is not optimal in terms of spectrum efficiency offered to the receivers. Indeed, the scheme that consists in sending superposed data offers better performance than the time sharing. This thesis investigates the application of superposition coding in satellite communication systems. First of all, we study the performance of hierarchical modulation which is an implementation of superposition coding at the modulation level. We propose a performance evaluation method for such modulations. We also compare the performance of hierarchical and non hierarchical modulations in terms of spectrum efficiency and link unavailability. These two criteria are very important for broadcast system and we show that hierarchical modulations often offer better performance than non hierarchical modulations.Then, we study the performance improvement in terms of spectrum efficiency when using hierarchical modulation in satellite communication systems. Two issues are addressed. The first one is how to group the receivers in pairs in order to transmit data with a hierarchical modulation. The second issue is the computation of the spectrum efficiency. We show that significant gains are possible depending on the system configuration. The last part considers a system where multiple users communicate through a satellite. The satellite acts as a relay in our scenario. We propose a communication scheme where several users emit at the same time with appropriate transmitting power. Thus the signals naturally superpose and generate interference. The receivers use two mechanisms for decoding the signals: physical layer network coding and demodulation of superposed constellations. Finally, we explain how the performance improvements obtained by superposition coding in several scenarios open perspectives for future work.
|
6 |
A Practical Coding Scheme For Broadcast ChannelSun, Wenbo 10 1900 (has links)
<p>In this thesis, a practical superposition coding scheme based on multilevel low-density parity-check (LDPC) codes is proposed for discrete memoryless broadcast channels. The simulation results show that the performance of the proposed scheme approaches the information-theoretic limits. We also propose a method for optimizing the degree distribution of multilevel LDPC codes based on the analysis of EXIT functions.</p> / Master of Applied Science (MASc)
|
7 |
Logical Superposition Coded Modulation for Wireless Video MulticastingHo, James Ching-Chih January 2009 (has links)
This thesis documents the design of logical superposition coded (SPC) modulation for implementation in wireless video multicast systems, to tackle the issues caused by multi-user channel diversity, one of the legacy problems due to the nature of wireless video multicasting. The framework generates a logical SPC modulated signal by mapping successively refinable information bits into a single signal constellation with modifications in the MAC-layer software. The transmitted logical SPC signals not only manipulatively mimic SPC signals generated by the superposition of multiple modulated signals in the conventional hardware-based SPC modulation, but also yield comparable performance gains when provided with the knowledge of information bits dependencies and receiver channel distributions. At the receiving end, the proposed approach only requires simple modifications in the MAC layer software, which demonstrates full decoding compatibility with the conventional multi-stage signal-interference cancellation (SIC) approach involving additional hardware devices. Generalized formulations for symbol error rate (SER) are derived for performance evaluations and comparisons with the conventional hardware-based approach.
|
8 |
Logical Superposition Coded Modulation for Wireless Video MulticastingHo, James Ching-Chih January 2009 (has links)
This thesis documents the design of logical superposition coded (SPC) modulation for implementation in wireless video multicast systems, to tackle the issues caused by multi-user channel diversity, one of the legacy problems due to the nature of wireless video multicasting. The framework generates a logical SPC modulated signal by mapping successively refinable information bits into a single signal constellation with modifications in the MAC-layer software. The transmitted logical SPC signals not only manipulatively mimic SPC signals generated by the superposition of multiple modulated signals in the conventional hardware-based SPC modulation, but also yield comparable performance gains when provided with the knowledge of information bits dependencies and receiver channel distributions. At the receiving end, the proposed approach only requires simple modifications in the MAC layer software, which demonstrates full decoding compatibility with the conventional multi-stage signal-interference cancellation (SIC) approach involving additional hardware devices. Generalized formulations for symbol error rate (SER) are derived for performance evaluations and comparisons with the conventional hardware-based approach.
|
9 |
HARQ Systems: Resource Allocation, Feedback Error Protection, and Bits-to-Symbol MappingsTumula V. K., Chaitanya January 2013 (has links)
Reliability of data transmission is a fundamental problem in wireless communications. Fading in wireless channels causes the signal strength to vary at the receiver and this results in loss of data packets. To improve the reliability, automatic repeat request (ARQ) schemes were introduced. However these ARQ schemes suffer from a reduction in the throughput. To address the throughput reduction, conventional ARQ schemes were combined with forward error correction (FEC) schemes to develop hybrid-ARQ (HARQ) schemes. For improving the reliability of data transmission, HARQ schemes are included in the present wireless standards like LTE, LTE-Advanced and WiMAX. Conventional HARQ systems use the same transmission power and the same number of channel uses in different ARQ rounds. However this is not optimal in terms of minimizing the average transmit power or the average energy spent for successful transmission of a data packet. We address this issue in the first part of the dissertation, where we consider optimal resource allocation in HARQ systems with a limit on the maximum number of allowed transmissions for a data packet. Specifically, we consider the problem of minimizing the packet drop probability (PDP) under an average transmit power constraint or equivalently minimizing the average transmit power under a fixed PDP constraint. We consider both incremental redundancy (IR)-based and Chase combining (CC)-based HARQ systems in our work. For an IR-HARQ system, for the special case of two allowed transmissions for each packet, we provide a solution for the optimal number of channel uses and the optimal power to be used in each ARQ round. For a CC-HARQ system, we solve the problem of optimal power allocation in i.i.d. Rayleigh fading channels as well as correlated Rayleigh fading channels. For the CC-HARQ case, we also provide a low complexity geometric programming (GP) solution using an approximation of the outage probability expression. HARQ systems conventionally use one bit acknowledgement (ACK)/negative ACK (NACK) feedback from the receiver to the transmitter. In the 3GPP-LTE systems, one method for sending these HARQ acknowledgement bits is to jointly code them with the other control signaling information using a specified Reed-Muller code consisting of 20 coded bits. Even though the resources used for sending this control signaling information can inherently provide a diversity gain, the Reed-Muller code with such a short block size is not good at extracting all of the available diversity. To address this issue, in the second part of this dissertation, we propose two new methods: i) based on complex-field coding (CFC), and ii) using repetition across frequency bands, to extract the inherent diversity available in the channel resources and improve the error protection for the HARQ acknowledgement bits along with the other control signaling information. In the second part of the dissertation, we also propose a new signal space diversity (SSD) scheme, which results in transmit signals having constant envelope (CE). The proposed CE-SSD scheme results in a better overall power efficiency due to the reduced back-off requirements on the radio frequency power amplifier. Moreover, the proposed CE-SSD technique can be useful for application scenarios involving transmission of small number of information bits, such as in the case of control signaling information transmission. In conventional HARQ systems, during the retransmission phase, the channel resources are exclusively used for the retransmitted data packet. This is not optimal in terms of efficient resource utilization. For efficient utilization of channel resources during the retransmissions, a superposition coding (SPC) based HARQ scheme was proposed in the literature. In an SPC based HARQ system, an erroneous packet is transmitted together with a new data packet by superposition in the Euclidean space. In the final part of this dissertation, we study performance of different bits-to-symbol mappings for such an SPC based HARQ system.
|
10 |
Efficient multiuser cooperative relay communications employing layered modulationsWhang, Roderick Jaehoon 22 September 2011 (has links)
Relay-assisted cooperative communications are promising solutions for error-performance improvement and cell coverage extension. In this thesis, we propose several efficient cooperative relay communication schemes. First, an efficient space-time coded cooperative relay communications scheme that employs linear precoding and transmission-pattern selection is proposed. This is built upon an existing block linear precoding technique for conventional multiple-input multiple-output systems in order to improve the diversity performance of a multihop relay network. Second, we consider several multiuser cooperative relay
communication schemes employing layered modulations, such as hierarchical modulation and superposition coding. Conventional cooperative relay communication is effective in mitigating fading effects. However, additional resources, such as time slots or frequency bands are required for the relay, which reduce the overall throughput. Reduction of throughput will become more severe as the number of users increases. In order to overcome this limitation, multiuser cooperative relaying schemes that employ hierarchical modulation and superposition coding are proposed. These schemes exploit the superimposed message for users in the network and allow the system to transmit two or more independent data streams simultaneously. The proposed schemes do not require additional resources than the conventional schemes, while improving the error performance by flexibly controlling the power division coefficient of superposition coding or the distance parameter of hierarchical modulation. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 28, 2011 - Sept. 28, 2012
|
Page generated in 0.1165 seconds