• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 64
  • 43
  • 26
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 619
  • 619
  • 280
  • 218
  • 211
  • 150
  • 136
  • 129
  • 98
  • 95
  • 90
  • 88
  • 78
  • 78
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

AIRS: a resource limited artificial immune classifier

Watkins, Andrew B. January 2001 (has links)
Thesis (M.S.)--Mississippi State University. Department of Computer Science. / Title from title screen. Includes bibliographical references.
112

Combining classifier and cluster ensembles for semi-supervised and transfer learning

Acharya, Ayan 09 July 2012 (has links)
Unsupervised models can provide supplementary soft constraints to help classify new, "target" data since similar instances in the target set are more likely to share the same class label. Such models can also help detect possible differences between training and target distributions, which is useful in applications where concept drift may take place, as in transfer learning settings. This contribution describes two general frameworks that take as input class membership estimates from existing classifiers learnt on previously encountered "source" data, as well as a set of cluster labels from a cluster ensemble operating solely on the target data to be classified, and yield a consensus labeling of the target data. One of the proposed frameworks admits a wide range of loss functions and classification/clustering methods and exploits properties of Bregman divergences in conjunction with Legendre duality to yield a principled and scalable approach. The other approach is built on probabilistic mixture models and provides additional flexibility of distributed computation that is useful when the target data cannot be gathered in a single place for privacy or security concerns. A variety of experiments show that the proposed frameworks can yield results substantially superior to those provided by popular transductive learning techniques or by naively applying classifiers learnt on the original task to the target data. / text
113

New insights on the power of active learning

Berlind, Christopher 21 September 2015 (has links)
Traditional supervised machine learning algorithms are expected to have access to a large corpus of labeled examples, but the massive amount of data available in the modern world has made unlabeled data much easier to acquire than accompanying labels. Active learning is an extension of the classical paradigm intended to lessen the expense of the labeling process by allowing the learning algorithm to intelligently choose which examples should be labeled. In this dissertation, we demonstrate that the power to make adaptive label queries has benefits beyond reducing labeling effort over passive learning. We develop and explore several novel methods for active learning that exemplify these new capabilities. Some of these methods use active learning for a non-standard purpose, such as computational speedup, structure discovery, and domain adaptation. Others successfully apply active learning in situations where prior results have given evidence of its ineffectiveness. Specifically, we first give an active algorithm for learning disjunctions that is able to overcome a computational intractability present in the semi-supervised version of the same problem. This is the first known example of the computational advantages of active learning. Next, we investigate using active learning to determine structural properties (margins) of the data-generating distribution that can further improve learning rates. This is in contrast to most active learning algorithms which either assume or ignore structure rather than seeking to identify and exploit it. We then give an active nearest neighbors algorithm for domain adaptation, the task of learning a predictor for some target domain using mostly examples from a different source domain. This is the first formal analysis of the generalization and query behavior of an active domain adaptation algorithm. Finally, we show a situation where active learning can outperform passive learning on very noisy data, circumventing prior results that active learning cannot have a significant advantage over passive learning in high-noise regimes.
114

Transfer learning for classification of spatially varying data

Jun, Goo 13 December 2010 (has links)
Many real-world datasets have spatial components that provide valuable information about characteristics of the data. In this dissertation, a novel framework for adaptive models that exploit spatial information in data is proposed. The proposed framework is mainly based on development and applications of Gaussian processes. First, a supervised learning method is proposed for the classification of hyperspectral data with spatially adaptive model parameters. The proposed algorithm models spatially varying means of each spectral band of a given class using a Gaussian process regression model. For a given location, the predictive distribution of a given class is modeled by a multivariate Gaussian distribution with spatially adjusted parameters obtained from the proposed algorithm. The Gaussian process model is generally regarded as a good tool for interpolation, but not for extrapolation. Moreover, the uncertainty of the predictive distribution increases as the distance from the training instances increases. To overcome this problem, a semi-supervised learning algorithm is presented for the classification of hyperspectral data with spatially adaptive model parameters. This algorithm fits the test data with a spatially adaptive mixture-of-Gaussians model, where the spatially varying parameters of each component are obtained by Gaussian process regressions with soft memberships using the mixture-of-Gaussian-processes model. The proposed semi-supervised algorithm assumes a transductive setting, where the unlabeled data is considered to be similar to the training data. This is not true in general, however, since one may not know how many classes may existin the unexplored regions. A spatially adaptive nonparametric Bayesian framework is therefore proposed by applying spatially adaptive mechanisms to the mixture model with infinitely many components. In this method, each component in the mixture has spatially adapted parameters estimated by Gaussian process regressions, and spatial correlations between indicator variables are also considered. In addition to land cover and land use classification applications based on hyperspectral imagery, the Gaussian process-based spatio-temporal model is also applied to predict ground-based aerosol optical depth measurements from satellite multispectral images, and to select the most informative ground-based sites by active learning. In this application, heterogeneous features with spatial and temporal information are incorporated together by employing a set of covariance functions, and it is shown that the spatio-temporal information exploited in this manner substantially improves the regression model. The conventional meaning of spatial information usually refers to actual spatio-temporal locations in the physical world. In the final chapter of this dissertation, the meaning of spatial information is generalized to the parametrized low-dimensional representation of data in feature space, and a corresponding spatial modeling technique is exploited to develop a nearest-manifold classification algorithm. / text
115

Active Machine Learning for Computational Design and Analysis under Uncertainties

Lacaze, Sylvain January 2015 (has links)
Computational design has become a predominant element of various engineering tasks. However, the ever increasing complexity of numerical models creates the need for efficient methodologies. Specifically, computational design under uncertainties remains sparsely used in engineering settings due to its computational cost. This dissertation proposes a coherent framework for various branches of computational design under uncertainties, including model update, reliability assessment and reliability-based design optimization. Through the use of machine learning techniques, computationally inexpensive approximations of the constraints, limit states, and objective functions are constructed. Specifically, a novel adaptive sampling strategy allowing for the refinement of any approximation only in relevant regions has been developed, referred to as generalized max-min. This technique presents various computational advantages such as ease of parallelization and applicability to any metamodel. Three approaches tailored for computational design under uncertainties are derived from the previous approximation technique. An algorithm for reliability assessment is proposed and its efficiency is demonstrated for different probabilistic settings including dependent variables using copulas. Additionally, the notion of fidelity map is introduced for model update settings with large number of dependent responses to be matched. Finally, a new reliability-based design optimization method with local refinement has been developed. A derivation of sampling-based probability of failure derivatives is also provided along with a discussion on numerical estimates. This derivation brings additional flexibility to the field of computational design. The knowledge acquired and techniques developed during this Ph.D. have been synthesized in an object-oriented MATLAB toolbox. The help and ergonomics of the toolbox have been designed so as to be accessible by a large audience.
116

Towards a Spectral Theory for Simplicial Complexes

Steenbergen, John Joseph January 2013 (has links)
<p>In this dissertation we study combinatorial Hodge Laplacians on simplicial com-</p><p>plexes using tools generalized from spectral graph theory. Specifically, we consider</p><p>generalizations of graph Cheeger numbers and graph random walks. The results in</p><p>this dissertation can be thought of as the beginnings of a new spectral theory for</p><p>simplicial complexes and a new theory of high-dimensional expansion.</p><p>We first consider new high-dimensional isoperimetric constants. A new Cheeger-</p><p>type inequality is proved, under certain conditions, between an isoperimetric constant</p><p>and the smallest eigenvalue of the Laplacian in codimension 0. The proof is similar</p><p>to the proof of the Cheeger inequality for graphs. Furthermore, a negative result is</p><p>proved, using the new Cheeger-type inequality and special examples, showing that</p><p>certain Cheeger-type inequalities cannot hold in codimension 1.</p><p>Second, we consider new random walks with killing on the set of oriented sim-</p><p>plexes of a certain dimension. We show that there is a systematic way of relating</p><p>these walks to combinatorial Laplacians such that a certain notion of mixing time</p><p>is bounded by a spectral gap and such that distributions that are stationary in a</p><p>certain sense relate to the harmonics of the Laplacian. In addition, we consider the</p><p>possibility of using these new random walks for semi-supervised learning. An algo-</p><p>rithm is devised which generalizes a classic label-propagation algorithm on graphs to</p><p>simplicial complexes. This new algorithm applies to a new semi-supervised learning</p><p>problem, one in which the underlying structure to be learned is flow-like.</p> / Dissertation
117

A Dual Pathway Approach for Solving the Spatial Credit Assignment Problem in a Biological Way

Connor, Patrick 01 November 2013 (has links)
To survive, many biological organisms need to accurately infer which features of their environment predict future rewards and punishments. In machine learning terms, this is the problem of spatial credit assignment, for which many supervised learning algorithms have been developed. In this thesis, I mainly propose that a dual-pathway, regression-like strategy and associated biological implementations may be used to solve this problem. Using David Marr's (1982) three-level philosophy of computational neuroscience, the thesis and its contributions are organized as follows: - Computational Level: Here, the spatial credit assignment problem is formally defined and modeled using probability density functions. The specific challenges of the problem faced by organisms and machine learning algorithms alike are also identified. - Algorithmic Level: I present and evaluate the novel hypothesis that the general strategy used by animals is to perform a regression over past experiences. I also introduce an extension of a probabilistic model for regression that substantially improves generalization without resorting to regularization. This approach subdues residual associations to irrelevant features, as does regularization. - Physical Level: Here, the neuroscience of classical conditioning and of the basal ganglia is briefly reviewed. Then, two novel models of the basal ganglia are put forward: 1) an online-learning model that supports the regression hypothesis and 2) a biological implementation of the probabilistic model previously introduced. Finally, we compare these models to others in the literature. In short, this thesis establishes a theoretical framework for studying the spatial credit assignment problem, offers a simple hypothesis for how biological systems solve it, and implements basal ganglia-based algorithms in support. The thesis brings to light novel approaches for machine learning and several explanations for biological structures and classical conditioning phenomena. / Note: While the thesis contains content from two articles (one journal, one conference), their publishers do not require special permission for their use in dissertations (information confirming this is in an appendix of the thesis itself).
118

Human Rationality : Observing or Inferring Reality

Henriksson, Maria P. January 2015 (has links)
This thesis investigates the boundary of human rationality and how psychological processes interact with underlying regularities in the environment and affect beliefs and achievement. Two common modes in everyday experiential learning, supervised and unsupervised learning were hypothesized to tap different ecological and epistemological approaches to human adaptation; the Brunswikian and the Gibsonian approach. In addition, they were expected to be differentially effective for achievement depending on underlying regularities in the task environment. The first approach assumes that people use top-down processes and learn from hypothesis testing and external feedback, while the latter assumes that people are receptive to environmental stimuli and learn from bottom-up processes, without mediating inferences and support from external feedback, only exploratory observations and actions. Study I investigates selective supervised learning and showed that biased beliefs arise when people store inferences about category members when information is partially absent. This constructivist coding of pseudo-exemplars in memory yields a conservative bias in the relative frequency of targeted category members when the information is constrained by the decision maker’s own selective sampling behavior, suggesting that niche picking and risk aversion contribute to conservatism or inertia in human belief systems. However, a liberal bias in the relative frequency of targeted category members is more likely when information is constrained by the external environment. This result suggests that highly exaggerated beliefs and risky behaviors may be more likely in environments where information is systematically manipulated, for example when positive examples are highlighted to convey a favorable image while negative examples are systematically withheld from the public eye. Study II provides support that the learning modes engage different processes. Supervised learning is more accurate in less complex linear task environments, while unsupervised learning is more accurate in complex nonlinear task environments. Study III provides further support for abstraction based on hypothesis testing in supervised learning, and abstraction based on receptive bottom-up processes in unsupervised learning that aimed to form ideal prototypes as highly valid reference points stored in memory. The studies support previous proposals that integrating the Brunswikian and the Gibsonian approach can broaden the scope of psychological research and scientific inquiry.
119

Kernelized Supervised Dictionary Learning

Jabbarzadeh Gangeh, Mehrdad 24 April 2013 (has links)
The representation of a signal using a learned dictionary instead of predefined operators, such as wavelets, has led to state-of-the-art results in various applications such as denoising, texture analysis, and face recognition. The area of dictionary learning is closely associated with sparse representation, which means that the signal is represented using few atoms in the dictionary. Despite recent advances in the computation of a dictionary using fast algorithms such as K-SVD, online learning, and cyclic coordinate descent, which make the computation of a dictionary from millions of data samples computationally feasible, the dictionary is mainly computed using unsupervised approaches such as k-means. These approaches learn the dictionary by minimizing the reconstruction error without taking into account the category information, which is not optimal in classification tasks. In this thesis, we propose a supervised dictionary learning (SDL) approach by incorporating information on class labels into the learning of the dictionary. To this end, we propose to learn the dictionary in a space where the dependency between the signals and their corresponding labels is maximized. To maximize this dependency, the recently-introduced Hilbert Schmidt independence criterion (HSIC) is used. The learned dictionary is compact and has closed form; the proposed approach is fast. We show that it outperforms other unsupervised and supervised dictionary learning approaches in the literature on real-world data. Moreover, the proposed SDL approach has as its main advantage that it can be easily kernelized, particularly by incorporating a data-driven kernel such as a compression-based kernel, into the formulation. In this thesis, we propose a novel compression-based (dis)similarity measure. The proposed measure utilizes a 2D MPEG-1 encoder, which takes into consideration the spatial locality and connectivity of pixels in the images. The proposed formulation has been carefully designed based on MPEG encoder functionality. To this end, by design, it solely uses P-frame coding to find the (dis)similarity among patches/images. We show that the proposed measure works properly on both small and large patch sizes on textures. Experimental results show that by incorporating the proposed measure as a kernel into our SDL, it significantly improves the performance of a supervised pixel-based texture classification on Brodatz and outdoor images compared to other compression-based dissimilarity measures, as well as state-of-the-art SDL methods. It also improves the computation speed by about 40% compared to its closest rival. Eventually, we have extended the proposed SDL to multiview learning, where more than one representation is available on a dataset. We propose two different multiview approaches: one fusing the feature sets in the original space and then learning the dictionary and sparse coefficients on the fused set; and the other by learning one dictionary and the corresponding coefficients in each view separately, and then fusing the representations in the space of the dictionaries learned. We will show that the proposed multiview approaches benefit from the complementary information in multiple views, and investigate the relative performance of these approaches in the application of emotion recognition.
120

Application of supervised and unsupervised learning to analysis of the arterial pressure pulse

Walsh, Andrew Michael, Graduate school of biomedical engineering, UNSW January 2006 (has links)
This thesis presents an investigation of statistical analytical methods applied to the analysis of the shape of the arterial pressure waveform. The arterial pulse is analysed by a selection of both supervised and unsupervised methods of learning. Supervised learning methods are generally better known as regression. Unsupervised learning methods seek patterns in data without the specification of a target variable. The theoretical relationship between arterial pressure and wave shape is first investigated by study of a transmission line model of the arterial tree. A meta-database of pulse waveforms obtained by the SphygmoCor"??" device is then analysed by the unsupervised learning technique of Self Organising Maps (SOM). The map patterns indicate that the observed arterial pressures affect the wave shape in a similar way as predicted by the theoretical model. A database of continuous arterial pressure obtained by catheter line during sleep is used to derive supervised models that enable estimation of arterial pressures, based on the measured wave shapes. Independent component analysis (ICA) is also used in a supervised learning methodology to show the theoretical plausibility of separating the pressure signals from unwanted noise components. The accuracy and repeatability of the SphygmoCor?? device is measured and discussed. Alternative regression models are introduced that improve on the existing models in the estimation of central cardiovascular parameters from peripheral arterial wave shapes. Results of this investigation show that from the information in the wave shape, it is possible, in theory, to estimate the continuous underlying pressures within the artery to a degree of accuracy acceptable to the Association for the Advancement of Medical Instrumentation. This could facilitate a new role for non-invasive sphygmographic devices, to be used not only for feature estimation but as alternatives to invasive arterial pressure sensors in the measurement of continuous blood pressure.

Page generated in 0.0971 seconds