Spelling suggestions: "subject:"aupply chain managemement aptimization"" "subject:"aupply chain managemement anoptimization""
1 |
An optimization model for strategic supply chain design under stochastic capacity disruptionsLuna Coronado, Jaime 10 October 2008 (has links)
This Record of Study contains the details of an optimization model developed for Shell Oil Co. This model will be used during the strategic design process of a supply chain for a new technology commercialization. Unlike traditional supply chain deterministic optimization, this model incorporates different levels of uncertainty at suppliers' nominal capacity. Because of the presence of uncertainty at the supply stage, the objective of this model is to define the best diversification and safety stock level allocated to each supplier, which minimize the total expected supply chain cost. We propose a Monte Carlo approach for scenario generation, a two-stage non-linear formulation and the Sample Average Approximation (SAA) procedure to solve the problem near optimality. We also propose a simple heuristic procedure to avoid the nonlinearity issue. The sampling and heuristic optimization procedures were implemented in a spreadsheet with a user's interface. The main result of this development is the analysis of the impact of diversification in strategic sourcing decisions, in the presence of stochastic supply disruptions.
|
2 |
An optimization model for strategic supply chain design under stochastic capacity disruptionsLuna Coronado, Jaime 15 May 2009 (has links)
This Record of Study contains the details of an optimization model developed for Shell Oil Co. This model will be used during the strategic design process of a supply chain for a new technology commercialization. Unlike traditional supply chain deterministic optimization, this model incorporates different levels of uncertainty at suppliers’ nominal capacity. Because of the presence of uncertainty at the supply stage, the objective of this model is to define the best diversification and safety stock level allocated to each supplier, which minimize the total expected supply chain cost. We propose a Monte Carlo approach for scenario generation, a two-stage non-linear formulation and the Sample Average Approximation (SAA) procedure to solve the problem near optimality. We also propose a simple heuristic procedure to avoid the nonlinearity issue. The sampling and heuristic optimization procedures were implemented in a spreadsheet with a user’s interface. The main result of this development is the analysis of the impact of diversification in strategic sourcing decisions, in the presence of stochastic supply disruptions.
|
3 |
An optimization model for strategic supply chain design under stochastic capacity disruptionsLuna Coronado, Jaime 15 May 2009 (has links)
This Record of Study contains the details of an optimization model developed for Shell Oil Co. This model will be used during the strategic design process of a supply chain for a new technology commercialization. Unlike traditional supply chain deterministic optimization, this model incorporates different levels of uncertainty at suppliers’ nominal capacity. Because of the presence of uncertainty at the supply stage, the objective of this model is to define the best diversification and safety stock level allocated to each supplier, which minimize the total expected supply chain cost. We propose a Monte Carlo approach for scenario generation, a two-stage non-linear formulation and the Sample Average Approximation (SAA) procedure to solve the problem near optimality. We also propose a simple heuristic procedure to avoid the nonlinearity issue. The sampling and heuristic optimization procedures were implemented in a spreadsheet with a user’s interface. The main result of this development is the analysis of the impact of diversification in strategic sourcing decisions, in the presence of stochastic supply disruptions.
|
4 |
An optimization model for strategic supply chain design under stochastic capacity disruptionsLuna Coronado, Jaime 10 October 2008 (has links)
This Record of Study contains the details of an optimization model developed for Shell Oil Co. This model will be used during the strategic design process of a supply chain for a new technology commercialization. Unlike traditional supply chain deterministic optimization, this model incorporates different levels of uncertainty at suppliers' nominal capacity. Because of the presence of uncertainty at the supply stage, the objective of this model is to define the best diversification and safety stock level allocated to each supplier, which minimize the total expected supply chain cost. We propose a Monte Carlo approach for scenario generation, a two-stage non-linear formulation and the Sample Average Approximation (SAA) procedure to solve the problem near optimality. We also propose a simple heuristic procedure to avoid the nonlinearity issue. The sampling and heuristic optimization procedures were implemented in a spreadsheet with a user's interface. The main result of this development is the analysis of the impact of diversification in strategic sourcing decisions, in the presence of stochastic supply disruptions.
|
5 |
Využití optimalizace v řízení výroby / The use of optimization in production planningPokorný, Pavel January 2008 (has links)
The Master’s thesis deals with production scheduling in an industrial company. It uses the means of artificial intelligence to develop an appropriate production schedule in a generalized Flow-shop Programming problem. This problem can be solved by application which is a result of this thesis and was prepaired with use of the software Matlab 7.1 and its Genetic Algorithm and Direct Search toolbox. There is a part devoted to the use of advanced production systems (APS) and the concept of the operative production planning in praxis as well. The thesis pays attention to various optimization models in production scheduling and supply chain management too.
|
Page generated in 0.1104 seconds