• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development, application, and expansion of VADER, a platform for directed evolution in mammalian cells:

Jewel, Delilah January 2023 (has links)
Thesis advisor: Abhishek Chatterjee / Thesis advisor: Eranthie Weerapana / In nature, just twenty canonical amino acids are responsible for the creation of nearly all proteins. Genetic code expansion (GCE), or the incorporation of noncanonical amino acids (ncAAs) into living cells, is a powerful tool that expands the studies we are capable of performing using proteins. This technology relies on engineered aminoacyl-tRNA synthetase (aaRS)/tRNA pairs that are orthogonal to the host cells’ endogenous aaRS/tRNA pairs, and one of the main limitations of GCE arises from the inefficiency of these suppressor tRNAs when expressed in a foreign host cell. To address this limitation, we have previously reported a strategy for the virus-assisted directed evolution of tRNAs (VADER) which is uniquely capable of addressing the specific needs of tRNA evolution. In order to advance the capabilities of VADER, we made a number of modifications to the VADER selection scheme. First, we designed and executed a modified VADER selection that enabled the evolution of a new class of tRNAs, and with this VADER selection, we were able to generate a first-generation E. coli tyrosyl tRNA (tRNATyr) variant that was three times as active as its wild-type equivalent. Next, we introduced a number of refinements to the VADER strategy to generate VADER 2.0, an improved workflow capable of screening larger libraries and libraries encoding more active variants. Using VADER 2.0, we created second-generation tRNAPyl and tRNATyr mutants that achieved incorporation efficiencies that were greater than five-fold higher than their wild-type equivalents across a wide variety of substrates, enabling exciting GCE experiments that would not be possible otherwise. / Thesis (PhD) — Boston College, 2023. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Novel Strategies for Producing Proteins with Non-Proteinogenic Amino Acids

January 2013 (has links)
abstract: The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or 4-bp codons. There has been considerable progress in developing new types of amino acids, in identifying novel methods of tRNA aminoacylation, and in expanding the genetic code to direct their position. Chemical aminoacylation of tRNAs is accomplished by acylation and ligation of a dinucleotide (pdCpA) to the 3'-terminus of truncated tRNA. This strategy allows the incorporation of a wide range of natural and unnatural amino acids into pre-determined sites, thereby facilitating the study of structure-function relationships in proteins and allowing the investigation of their biological, biochemical and biophysical properties. Described in Chapter 1 is the current methodology for synthesizing aminoacylated suppressor tRNAs. Aminoacylated suppressor tRNACUAs are typically prepared by linking pre-aminoacylated dinucleotides (aminoacyl-pdCpAs) to 74 nucleotide (nt) truncated tRNAs (tRNA-COH) via a T4 RNA ligase mediated reaction. Alternatively, there is another route outlined in Chapter 1 that utilizes a different pre-aminoacylated dinucleotide, AppA. This dinucleotide has been shown to be a suitable substrate for T4 RNA ligase mediated coupling with abbreviated tRNA-COHs for production of 76 nt aminoacyl-tRNACUAs. The synthesized suppressor tRNAs have been shown to participate in protein synthesis in vitro, in an S30 (E. coli) coupled transcription-translation system in which there is a UAG codon in the mRNA at the position corresponding to Val10. Chapter 2 describes the synthesis of two non-proteinogenic amino acids, L-thiothreonine and L-allo-thiothreonine, and their incorporation into predetermined positions of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine. Here, the elaborated proteins were site-specifically derivitized with a fluorophore at the thiothreonine residue. The synthesis and incorporation of phosphorotyrosine derivatives into DHFR is illustrated in Chapter 3. Three different phosphorylated tyrosine derivatives were prepared: bis-nitrobenzylphosphoro-L-tyrosine, nitrobenzylphosphoro-L-tyrosine, and phosphoro-L-tyrosine. Their ability to participate in a protein synthesis system was also evaluated. / Dissertation/Thesis / Ph.D. Chemistry 2013

Page generated in 0.046 seconds