• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 22
  • 22
  • 10
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membrane Properties of Rat Supraotic Nucleus Neurons in Vitro

Bourque, Charles William January 1984 (has links)
Note:
2

Arterial baroreceptor regulation of vasopressin release /

Grindstaff, Ryan Jerrod, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / "May 2000." Typescript. Vita. Includes bibliographical references (leaves 166-187). Also available on the Internet.
3

Arterial baroreceptor regulation of vasopressin release

Grindstaff, Ryan Jerrod, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 166-187). Also available on the Internet.
4

Cardiopulmonary baroreceptor regulation of neurohypophysial hormones /

Grindstaff, Regina Rae Randolph, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / "August 2000." Typescript. Vita. Includes bibliographical references (leaves 189-210). Also available on the Internet.
5

Beacon/Ubiquitin-Like 5-Immunoreactivity in the Hypothalamus and Pituitary of the Mouse

Brailoiu, G. Cristina, Dun, Siok L., Chi, Michelle, Ohsawa, Masahiro, Chang, Jaw Kang, Yang, Jun, Dun, Nae J. 12 September 2003 (has links)
Beacon is a 73-amino acid peptide encoded by a novel gene in the hypothalamus of Israeli sand rat Psammomys obesus. Reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemical techniques were used to investigate the presence of beacon mRNA and the distribution of beacon-immunoreactivity (irBC) in the hypothalamus of ICR mice. RT-PCR experiments revealed beacon mRNA in the mouse hypothalamus. Using a rabbit polyclonal antiserum directed against the synthetic C-terminal peptide fragment (47-73), irBC was detected in the mouse hypothalamus and pituitary. In the hypothalamus, irBC was concentrated in perikarya of the supraoptic (SO), paraventricular (PVH) and accessory neurosecretory nuclei and in cell processes of the median eminence and pituitary stalk. In the pituitary, irBC was noted mainly in the posterior lobe. Double-labeling the hypothalamic sections with guinea-pig vasopressin-antiserum or mouse monoclonal oxytocin-antibody and beacon-antiserum revealed that <30% of vasopressin-immunoreactive neurons and nearly all oxytocin-immunoreactive neurons in the PVH and SO were irBC. The result shows the presence of beacon mRNA in the mouse hypothalamus, and the distribution of irBC is distinctively different from that reported in the hypothalamus of Psammomys obesus, but similar to that of the Sprague-Dawley rats described in our earlier study. More interestingly, Blast search uncovered a 73-amino acid peptide, human ubiquitin-like 5, which has the same exact sequence as beacon. Thus, irBC observed in the mouse brain could be that of ubiquitin-like 5.
6

Apelin-Immunoreactivity in the Rat Hypothalamus and Pituitary

Brailoiu, G. Cristina, Dun, Siok L., Yang, Jun, Ohsawa, Masahiro, Chang, Jaw Kang, Dun, Nae J. 26 July 2002 (has links)
With the use of an antiserum against human apelin-36, apelin-immunoreactivity (irAP) was detected in neurons and cell processes of the supraoptic nucleus (SO), paraventricular nucleus (PVH), accessory neurosecretory nuclei (Acc) and suprachiasmatic nucleus. Strongly labeled cells/processes were noted in the internal layer of the median eminence, infundibular stem, anterior and posterior pituitary. Double-labeling the sections with goat polyclonal neurophysin I-antiserum and rabbit polyclonal apelin-antiserum revealed a population of magnocellular neurons in the PVH, SO and Acc expressing both irAP and neurophysin I-immunoreactivity (irNP), the latter being a marker of oxytocin-containing neurons. By inference, the AP-positive but irNP-negative magnocellular neurons could be vasopressin-containing. The presence of irAP in certain hypothalamic nuclei and pituitary suggests that the peptide may be a signaling molecule released from the hypothalamic-hypophysial axis.
7

Cardiopulmonary baroreceptor regulation of neurohypophysial hormones

Grindstaff, Regina Rae Randolph, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 189-210). Also available on the Internet.
8

Avaliação do comprometimento hipotalâmico na secreção de vasopressina durante a sepse / Evaluation of hypothalamic impairment in vasopressin secretion during sepsis

Costa, Luís Henrique Angenendt da 18 December 2015 (has links)
Sepse e suas complicações (sepse grave e choque séptico) ainda são a principal causa de morte nas unidades de terapia intensiva em todo o mundo. Estudos clínicos e experimentais têm demonstrado que na fase inicial da sepse a concentração plasmática de arginina vasopressina (AVP) está elevada. No entanto, durante o processo fisiopatológico os níveis plasmáticos da mesma permanecem inadequadamente baixos, apesar de haver hipotensão persistente. Uma das hipóteses sugeridas para essa deficiência relativa de AVP é a apoptose de neurônios vasopressinérgicos. Nosso objetivo foi identificar elementos envolvidos na morte celular hipotalâmica, além de avaliar o comportamento de células gliais e da barreira hematoencefálica (BHE) durante a sepse. Ratos Wistar foram submetidos à sepse por ligadura e punção cecal (CLP) ou não manipulados (naive) como controle e então divididos em dois grupos. No primeiro, foram perfundidos e os cérebros coletados para imunohistoquímica. Outro grupo foi decapitado para a retirada de sangue para dosagem de interferon- gama (IFN-?) e encéfalo para análise da expressão de proteínas no hipotálamo ou nos núcleos supraópticos (SON) e paraventriculares (PVN). Um terceiro foi separado para investigação da permeabilidade da BHE. Apesar de aumento da imunomarcação de CD8 e MHC-I no SON dos animais sépticos, não encontramos indícios de morte celular mediada por células imunes. No SON e PVN de animais sépticos, a expressão de fatores envolvidos na ativação da via extrínseca de apoptose (tBID, caspase-8 clivada) se manteve inalterada, enquanto fatores anti-apoptóticos relacionados à via intrínseca (BCL-2, BCL-xL) estavam diminuídos no hipotálamo. No SON destes animais a micróglia assumiu uma morfologia associada à sua ativação, concomitante com o aumento plasmático de IFN-?. Houve rompimento transitório da BHE no hipotálamo após 6 horas do CLP. Os resultados indicam que a via intrínseca de apoptose parece ser a responsável pela morte celular que é observada nos núcleos vasopressinérgicos e essa condição está temporalmente associada à ativação microglial e rompimento da BHE / Sepsis and its complications (severe sepsis and septic shock) remain as the main cause of death in intensive care units worldwide. Clinical and experimental studies have shown that in the early phase of sepsis the plasma concentration of arginine vasopressin (AVP) is increased. However, during the pathophysiological process the plasma levels remain inadequately low, despite of persistent hypotension. One of the hypothesis suggested for this relative deficiency is the apoptosis of vasopressinergic neurons. Our objective was to identify elements involved in the hypothalamic cellular death and evaluate the modifications of glial cells and blood-brain-barrier (BBB) during sepsis. Wistar rats were submitted to sepsis by cecal ligation and puncture (CLP) or non-manipulated (naïve), as control and then divided in two groups. In the first one, they were perfused and brains were collected for immunohistochemistry. In another one they were decapitated for blood collection and further plasma interferongama (IFN-?) analysis by ELISA. Brain was also collected for apoptosis-related proteins expression analysis in the hypothalamus or in the supraoptic (SON) and paraventricular (PVN) nuclei. A third set was separated for the investigation of BBB permeability. Despite of increased immunostaining for CD8 and MHC-I in the SON of septic animals, we did not find evidence of cell death mediated by immune cells. In the SON and PVN of septic animals, the expression of proteins involved in the activation of the extrinsic apoptosis pathway (tBID, cleaved caspase-8) was not altered, whereas anti-apoptotic factors related to the intrinsic pathway (BCL-2, BCLxL) were decreased. In the SON of these animals, microglia assumed a morphology related to its activation, associated with the increase of plasma IFN-?. There was a transitory breakdown of BBB in hypothalamus after 6 hours following CLP. The results indicate that the intrinsic apoptosis pathway seems to be responsible for the cell death observed in vasopressinergic nuclei and this condition is temporally associated with microglial activation and BBB leaking
9

Modulatory role of the suprachiasmatic nucleus on the OVLT-SON pathway

Trudel, Eric, 1978- January 2009 (has links)
No description available.
10

Ion currents regulated by acute and chronic osmotic stimuli in rat supraoptic nucleus neurons

Zhang, Wenbo 25 February 2009
The magnocellular neurosecretory cells (MNCs) of the hypothalamus are able to change their firing rate and pattern in response to small changes in external osmolality due to the involvement of osmosensitive ion channels. The firing rate and pattern determine the release of vasopressin (VP), a primary hormone regulating osmolality by controlling water excretion from the kidney. Both VP- and oxytocin (OT)-MNCs display irregular and infrequent fire when plasma osmolality is near normal, and they progressively increase the frequency of firing to fast continuous firing with increases in osmolality. VP-MNCs also respond to osmotic stimulation by adopting a phasic pattern of firing, which maximizes neuropeptide secretion. Sustained dehydration also causes structural and functional adaptations in MNCs.<p> Voltage-dependent Ca2+ channels play many important roles not only in the regulation of cell excitability but also in intracellular signal transduction, and L-type Ca2+ channel-mediated Ca2+ signals initiate intracellular signal transduction events that activate long-lasting changes in brain function and behavior. Our electrophysiological and immunocytochemical studies demonstrate that 16-24 h of water deprivation causes a significant increase in the amplitude of L-type Ca2+ current (from 55.5 ± 6.2 to 99.1 ± 10.0 pA) but not in other types of Ca2+ current. This increase occurred in both VP- and OT-MNCs. Such an increase in L-type Ca2+ current may contribute to modulation of firing rate and pattern, regulation of vasopressin release, structural adaptation in MNCs during sustained dehydration.<p> The mechanisms underlying the transition of the electrical behaviour are not completely understood. Ion channels, especially osmosensitive ion channels, play key roles in the modulation of MNC firing. A voltage-gated, 4-AP- and TEA-insensitive slowly activating outward current displayed a significant increase in about 66% of MNCs when the osmolality of the external solution was acutely increased from 295 to 325 mosmol kg-1. The responding cells showed an increase in net outward current from 12.3 ± 1.3 pA/pF to 21.4 ± 1.8 pA/pF. The reversal potential of this current was near the equilibrium for K+ and shifted with changes of K+ concentrations in external solution, suggesting that this current is a K+-selective current. The KCNQ/M current selective blockers linopirdine (150 µM) and XE991 (5 µM) suppressed this current. The IC50 of XE991 blockade was 3.9 ìM. The KCNQ/M channel openers retigabine (10 µM) and flupirtine (10 µM) significantly increased the current and shifted its activation curve toward more negative potentials. E4031, a specific blocker of ERG K+ channels, did not significantly block this current. The results from immunocytochemistry suggest that MNCs express KCNQ2, KCNQ3, KCNQ4, and KCNQ5, but not KCNQ1. These data suggest that this osmosensitive current could be a KCNQ/M current. Studies using single unit extracellular recording in hypothalamic explants showed that 10 µM XE991 increased MNC firing rate and that 20 µM retigabine decreased firing rate or caused a cessation of firing. These data suggest that a KCNQ/M current contributes to the regulation of MNC firing. KCNQ/M channels play key roles in regulating neuronal excitability in many types of central neurons. Slow activation of this current during firing might suppress activity by hyperpolarizing the cells and thus contribute to a transition between fast continuous and burst firing.<p> Our studies will be beneficial to understand the mechanisms that control VP and OT in response to acute changes in osmolality and also the mechanisms underlying MNC adaptation during sustained dehydration.

Page generated in 0.0619 seconds