• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The organization and development of the lateral suprasylvian visual areas of the cat visual cortex

Zumbroich, Thomas J. January 1986 (has links)
No description available.
2

Multisensory Input to the Lateral Rostral Suprasylvian Sulcus (LRSS) in Ferret

Hagood, Elizabeth 21 April 2009 (has links)
For the brain to construct a comprehensive percept of the sensory world, information from the different senses must converge onto individual neurons within the central nervous system. As a consequence, how these neurons convert convergent sensory input into multisensory information is an important question facing neuroscience today. Recent physiological studies have demonstrated the presence of a robust population of multisensory neurons in the lateral bank of the rostral suprasylvian sulcus (LRSS) in adult ferret (Keniston et al, 2008). The LRSS is a region situated between somatosensory and auditory cortices, where bimodal (somatosensory-auditory) neurons occupy the greatest percentage of the sensory-responsive cell population. The present study was designed to evaluate the anatomical connections that underlie these multisensory features. Injections of neuroanatomical tracer were first made into the LRSS. After transport and histological processing, microscopy revealed retrogradely-labeled cell bodies in identified regions of cortex and thalamus. The resultant analysis showed that the greatest number of projections to LRSS originated in auditory and somatosensory cortex. Of these, auditory cortex contributed a greater proportion of inputs. These anatomical data support the idea that LRSS is a multisensory cortex that receives primarily bimodal input from auditory and somatosensory sources.

Page generated in 0.0304 seconds