• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the bias-variance tradeoff : textbooks need an update

Neal, Brayden 12 1900 (has links)
L’objectif principal de cette thèse est de souligner que le compromis biais-variance n’est pas toujours vrai (p. ex. dans les réseaux neuronaux). Nous plaidons pour que ce manque d’universalité soit reconnu dans les manuels scolaires et enseigné dans les cours d’introduction qui couvrent le compromis. Nous passons d’abord en revue l’historique du compromis entre les biais et les variances, sa prévalence dans les manuels scolaires et certaines des principales affirmations faites au sujet du compromis entre les biais et les variances. Au moyen d’expériences et d’analyses approfondies, nous montrons qu’il n’y a pas de compromis entre la variance et le biais dans les réseaux de neurones lorsque la largeur du réseau augmente. Nos conclusions semblent contredire les affirmations de l’oeuvre historique de Geman et al. (1992). Motivés par cette contradiction, nous revisitons les mesures expérimentales dans Geman et al. (1992). Nous discutons du fait qu’il n’y a jamais eu de preuves solides d’un compromis dans les réseaux neuronaux lorsque le nombre de paramètres variait. Nous observons un phénomène similaire au-delà de l’apprentissage supervisé, avec un ensemble d’expériences d’apprentissage de renforcement profond. Nous soutenons que les révisions des manuels et des cours magistraux ont pour but de transmettre cette compréhension moderne nuancée de l’arbitrage entre les biais et les variances. / The main goal of this thesis is to point out that the bias-variance tradeoff is not always true (e.g. in neural networks). We advocate for this lack of universality to be acknowledged in textbooks and taught in introductory courses that cover the tradeoff. We first review the history of the bias-variance tradeoff, its prevalence in textbooks, and some of the main claims made about the bias-variance tradeoff. Through extensive experiments and analysis, we show a lack of a bias-variance tradeoff in neural networks when increasing network width. Our findings seem to contradict the claims of the landmark work by Geman et al. (1992). Motivated by this contradiction, we revisit the experimental measurements in Geman et al. (1992). We discuss that there was never strong evidence for a tradeoff in neural networks when varying the number of parameters. We observe a similar phenomenon beyond supervised learning, with a set of deep reinforcement learning experiments. We argue that textbook and lecture revisions are in order to convey this nuanced modern understanding of the bias-variance tradeoff.

Page generated in 0.0352 seconds