• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface Orientation Dependent Corrosion Damage and Temperature Dependent Mechanical Property Degradation of Sensitized AA5083-H116 Alloys

Mills, Robert Jeffrey 06 November 2018 (has links)
This study relates the sensitization process microstructural changes of 5083-H116 to its resulting corrosion resistance and mechanical performance. Alcoa 5083-H116 was sensitized in an environmental chamber at 100°C for up to ~1500 hours and 150°C up to ~2000 hours, revealing different degrees of sensitization based on exposure times. Microstructural characterization was conducted on etched sensitized samples. Additionally, samples were subjected to accelerated corrosion scenarios for subsequent microstructural examination and subsequent mechanical (tension and tensile creep) testing. To connect the laboratory studies to the field exposure, Novelis 5083-H116 was sensitized at 100°C; dog bone samples were created and exposed for two years in a beach environment to investigate possible sensitization and corrosion effects. It was found that the sensitization at 100°C and 150°C of Alcoa 5083-H116 led to recrystallization from the asreceived (AR) state of the material (3 mg/cm²). The degree of sensitization of 61 mg/cm² recrystallized the grain size the most from the AR state. The higher sensitization temperature of 150°C caused higher thickness loss and mass-loss rates (MR) for the intergranular corrosion (IGC) susceptible sensitization levels. Accelerated corrosion on different surface orientations led to different corrosion mechanisms (parallel IGC vs. perpendicular IGC). While 5083-H116 material corroded on the rolled surface led to a uniform exfoliation damage on 150°C sensitization exposure, the 100°C rolled surface only exhibited pitting corrosion damage. The through plate thickness corrosion damage, however, exhibited a corrosion susceptible-resistant-susceptible (CSRS) pattern. Mechanical properties were assessed for the various conditions in terms of room temperature tension testing and elevated temperature creep tests. Sensitization affected yield strength but did not play a role in ultimate tensile strength. The presence of corrosion damage lowered yield strength and ultimate tensile strength of the IGC susceptible sensitized 5083-H116, with the through thickness corrosion damage reducing the properties more than corrosion of the rolled surface. Material sensitized at 150°C and then corroded had a greater reduction in room temperature mechanical properties. Creep testing was performed at elevated temperatures, and it was found the solely sensitized 5083-H116 at 100°C or 150°C behaved the same as as-received 5083-H116. When corrosion damage was introduced, creep rupture times and secondary creep rates were changed. Once the corroded section area was accounted for, no significant difference in Larson-Miller parameters was observed. / Ph. D. / Aluminum is frequently replacing steel in the hulls of U.S. and Australians naval ships. It is preferred because of its lower density than steel and higher corrosion resistance which reduces the need to paint topside surfaces. However, when aluminum alloys that are used in ship construction are exposed to elevated temperatures, the corrosion resistance ca be considerably decreased. Furthermore, fire resistance is always a concern on naval ships. Accordingly, we are interested in predicting how aluminum ships that may have previously corroded respond to fires. In this study, a laboratory technique was used to speed up the corrosion process of these ship hull aluminum alloys. Some samples were thermally exposed in the laboratory for microscopic analysis, corrosion testing, and subsequent mechanical testing. To connect the laboratory studies to the field exposure, thermally exposed samples were placed on a beach for two years to investigate further environmental damages. It was found that the laboratory thermal exposure weakened the aluminum alloy. The thermally exposed alloys were weakened to the corrosion process. Different surfaces of the thermally exposed plates had different corrosion damage mechanisms. Mechanical properties were assessed for the various conditions in terms of room temperature tension testing and elevated temperature creep tests. Thermal exposure affected yield strength (the ability of the material to stretch) but did not play a role in ultimate tensile strength (maximum strength prior to breaking). The presence of corrosion damage lowered yield strength and ultimate tensile strength of the corrosion susceptible thermally exposed alloy. Creep testing (constant applied stress testing) was performed at elevated temperatures (representative of fire damage scenarios), and it was found that the solely thermally exposed alloy behaved the same as as-received alloy in terms of failure mechanisms. When corrosion damage was introduced, creep rupture times (time until material fails by breaking into two pieces) was reduced. Once the corrosion damage was accounted for, mechanical properties could be more accurately represented, and failure times (conditions in the alloy needs to be replaced on ships) were predicted for the alloy.
2

Caractérisation photoélectrochimique d'oxydes thermiques développés sur métaux et alliages modèles / Photoelectrochemical characterization of thermal oxide developed on metal and model alloys

Srisrual, Anusara 05 July 2013 (has links)
La Corrosion Haute Température (HTC), en environnements divers et sévères, d'alliages métalliques toujours plus élaborés en termes de composition et micro-structure, est un sujet industriel et scientifique très complexe. La PhotoElectroChimie (PEC) est une technique de choix pour caractériser les propriétés physico-chimiques et électroniques des couches d'oxydation très hétérogènes formées en HTC. Sur des exemples d'alliages modèles mais représentatifs de la réalité industrielle (aciers duplex, base-Nickel 690), ce travail présente le développement et la validation d'un dispositif expérimental permettant d'appliquer pour la première fois tout l'arsenal des techniques PEC à l'échelle mésoscopique (typiquement 30 µm), ainsi que la validation d'une modélisation originale développée au SIMaP des spectres de photocourants en énergie, qui permet de les décrire et ajuster finement et d'en extraire notamment avec précision les gaps des oxydes semiconducteurs présents dans la couche thermique. / High Temperature Corrosion (HTC), in various and severe atmospheres, of continually more elaborated (composition, micro–structure) metallic alloys, is a rather complex industrial and scientific topic. PhotoElectroChemistry (PEC) acquired a special place in the characterization of physico–chemical and electronic properties of the highly heterogeneous oxidation layers formed in HTC. Through studies of model but industrially representative samples (duplex stainless steel, Ni–base alloy 690), this work presents the development and validation of an experimental set–up allowing for the first time to use the whole set of PEC techniques at the mesoscopic level (typically 30 µm), as well as the validation of an original model of photocurrent energy spectra, developed at SIMaP, allowing to well describe, and accurately fit the latter spectra, and thus yielding, notably, precise bandgap values for the semiconducting components of the thermal scale.

Page generated in 0.101 seconds