Spelling suggestions: "subject:"burface waves (oceanography)"" "subject:"burface waves (oceanograph)""
1 |
Structure and Evolution of the Oceanic Lithosphere-Asthenosphere System from High-Resolution Surface-Wave ImagingRussell, Joshua Berryman January 2021 (has links)
In this thesis, I investigate the seismic structure of oceanic lithosphere and asthenosphere with a particular focus on seismic anisotropy, using high-resolution surface waves recorded on ocean-bottom seismometers (OBS) in the Pacific and Atlantic Oceans. The NoMelt (~70 Ma) and Young OBS Research into Convecting Asthenosphere (ORCA) (~43 Ma) OBS experiments located in the central and south Pacific, respectively, provide a detailed picture of ``typical'' oceanic lithosphere and asthenosphere and offer an unprecedented opportunity to investigate the age dependence of oceanic upper mantle structure. The Eastern North American Margin Community Seismic Experiment (ENAM-CSE) OBS array located just offshore the Eastern U.S. captures the transition from continental rifting during Pangea to normal seafloor spreading, representing significantly slower spreading rates. Collectively, this work represents a diverse set of observations that improve our understanding of seafloor spreading, present-day mantle dynamics, and ocean basin evolution.
At NoMelt, which represents pristine relatively unaltered oceanic mantle, we observe strong azimuthal anisotropy in the lithosphere that correlates with corner-flow induced shear during seafloor spreading. We observe perhaps the first clear Love-wave azimuthal anisotropy that, in addition to co-located Rayleigh-wave and active source Pn constraints, provides a novel in-situ estimate of the complete elastic tensor of the oceanic lithosphere. Comparing this observed anisotropy to a database of laboratory and naturally deformed olivine samples from the literature leads us to infer an alternative ``D-type'' fabric associated with grain-size sensitive deformation, rather than the commonly assumed A-type fabric. This has vast implications for our understanding of grain-scale deformation active at mid-ocean ridges and subsequent thermo-rheological evolution of the lithosphere.
At both NoMelt and YoungORCA we observe radial anisotropy in the lithosphere with Vsh > Vsv indicating subhorizontal fabric, in contrast to some recent global models. We also observe azimuthal anisotropy in the lithosphere that parallels the fossil-spreading direction. Estimates of radial anisotropy in the crust at both locations are the first of their kind and suggest horizontal layering and/or shearing associated with the crustal accretion process. Both experiments show asthenospheric anisotropy that is significantly rotated from current-day absolute plate motion as well as rotated from one another, at odds with the typical expectation of plate-induced shearing. This observation is consistent with small-scale density- or pressure-driven convection beneath the Pacific basin that varies in orientation over a length scale of at most ~2000 km and likely shorter.
By directly comparing shear velocities at YoungORCA and NoMelt, we show that the half-space cooling model can account for most (~75%) of the sublithospheric velocity difference between the two location when anelastic effects are accounted for. The unaccounted for ~25% velocity reduction at YoungORCA is consistent with lithospheric reheating, perhaps related to upwelling of hot mantle from small-scale convection or its proximity to the Marquesas hotspot.
While lithospheric anisotropy is parallel to the fossil-seafloor-spreading direction at both fast-spreading Pacific locations, it is perpendicular to spreading at the ENAM-CSE in the northwest Atlantic where spreading was ultra-slow to slow. Instead, anisotropy correlates with paleo absolute plate motion at the time of Pangea rifting ~180–195 Ma. We propose that ultra-slow-spreading environments, such as the early Atlantic, primarily record plate-motion modified fabric in the lithosphere rather than typical seafloor spreading fabric. Furthermore, slow shear velocities in the lithosphere may indicate that normal seafloor spreading did not initiate until ~170 Ma, 10–25 Myr after the initiation of continental rifting, revising previous estimates. Alternatively, it may shed new light on melt extraction at ultra-slow spreading environments.
|
2 |
Amplification of generalized surface waves.Michalopoulos, Evangelos. January 1976 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Civil Engineering, 1976 / Bibliography: leaf 139. / M.S. / M.S. Massachusetts Institute of Technology, Department of Civil Engineering
|
3 |
Hydrodynamic analysis of underwater bodies for efficient station keeping in shallow waters with surface wavesUnknown Date (has links)
To determine the effect of body shape on the response of underwater vehicles to
surface waves in shallow water, the wave radiation hydrodynamic forces are evaluated
for a family of (i) prolate spheroidal hull forms and (ii) cylindrical bodies with
hemispherical nose and conical tail sections by systematically varying the geometric
parameters but keeping displacement constant. The added-mass and wave damping
coefficients are determined using a frequency-domain, simple-source based boundary
integral method. Results are obtained for a range of wave frequencies and depths of
vehicle submergence all for a fixed water depth of 10 m. With the wave exciting force
and moment determined using the Froude-Krylov theory, the response transfer functions
for heave and pitch are then determined. The heave and pitch response spectra in actual
littoral seas are then determined with the sea state modeled using TMA spectral relations.
Results show that vehicle slenderness is a key factor affecting the hydrodynamic coefficients and response. The results show two characteristics that increase the radiation
hydrodynamic forces corresponding to heave and pitch motions: namely, vehicle length
and further-away from mid-vehicle location of the body shoulder. The opposite is true for
the oscillatory surge motion. By utilizing these observed characteristics, one can design
the lines for maximum radiation forces and consequently minimum hull response for the
critical modes of rigid-body motion in given waters and vehicle missions. In the studies
carried out in the thesis, a hull with a long parallel middle body with hemispherical nose
and conical tail sections has better heave and pitch response characteristics compared
prolate spheroid geometry of same volume. The methodology developed herein, which
is computationally efficient, can be used to determine optimal hull geometry for minimal
passive vehicle response in a given sea. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
|
4 |
Modification of a vortex-panel method to include surface effects and allow finite-element interfaceSimmons, Scott R. 02 May 2009 (has links)
A vortex-panel method for potential flow is used as a basis for modeling surface effects and creating a finite-element interface so that an arbitrary body can be analyzed. The basic model consists of triangular panels of linearly varying vorticity which represent the body, vortex cores on the lifting edges of the body, and vortex filaments representing the wake. The interface modification is made by using a finite-element application's output as the basis for an input file for the model, executing the main program, and writing body and wake output readable by the finite-element application. The surface-effect modification is made by including an image of the body below the real body to create a surface boundary condition through symmetry. / Master of Science
|
Page generated in 0.0519 seconds