• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation d'observables de premier passage pour des processus de diffusion intermittents confinés / First passage observable optimization for intermittent and confined diffusion processes

Calandre, Thibaut 03 July 2014 (has links)
Dans cette thèse, nous étudions les propriétés d’un mouvement de diffusion intermittent dans un milieu confiné.Dans ce but, nous considérons un modèle minimal de catalyse hétérogène, mettant en jeu une particule soumise à un mouvement de diffusion “surface-mediated”, alternant des phases de diffusion volumique à l’intérieur d’un disque, et des phases de diffusion surfacique sur le pourtour du disque. Pour un tel mouvement, nous obtenons des résultats pour plusieurs observables de premier passage (i) le temps moyen de premier passage d'atteindre une cible, (ii) la probabilité de splitting d’atteindre une cible spécifique, (iii) le territoire exploré avant de sortir du disque (iv) la probabilité de réaction avec des sites catalytiques. Selon la position relative de départ de de ces quantités vis-à-vis du temps d'adsorption moyen sur la surface. Nous avons montré que des excursions volumiques peuvent minimiser le temps de recherche d’une cible, même si celle-ci est située sur la surface. Nous présentons également un modèle simple de milieu poreux ordonné, constitué d’un réseau hypercubique de cavités identiques. Nous présentons deux modèles : (i) pour un mouvement brownien simple, (ii) pour un mouvement intermittent, en introduisant un paramètre de persistance. Nous montrons que ces deux modèles, dans la limite de non-persistance, converge vers le même résultat. Nous avons aussi etudié le comportement et l’optimisation du coefficient de diffusion vis-à-vis du temps moyen d’adsorption. Pour évaluer nos résultats théoriques, nous utilisons des simulations de Monte-Carlo et des résolutions numériques par le méthode des éléments finis. / In this thesis, we study first-passage properties for an intermittent Brownian motion inside a confining domain. We consider a minimal model of heterogenous catalysis in which a molecule performs surface-mediated diffusion inside a confining domain whose boundary contains catalytic sites. We obtain results for several observables : (i) the mean first-passage time to reach a target, (ii) the splitting probabilities that the molecule reach a specific target, (iii) the covered territory on the confining surface before the molecule exits the domain, (iv) the probability of reacting with catalytic sites. These results are exact for point like-targets, and are shown to be accurate also for extended targets, located on the surface or inside the bulk. Depending of the relative positions of the entrance and exit points, very different behaviors with respect to the mean adsorption time of the molecule on the surface are found. Although non-intuitive for bulk targets, it is found that boundary excursions, can minimize the search time. We also present a simple model of an ordered porous media. We present two models : (i) for a simple Brownian motion, (ii) for a surface-mediated diffusion with a parameter of persistence b. This model leads to a less simple result for the efficient diffusion coefficient. Our main result shows that in the limit of non persistence (b=0), both results are the same. We also provide an analysis of the behaviors of the efficient diffusion coefficient with respect to the mean adsorption time, showing optimisation possibilities. Numericals Monte-Carlo simulations and finite element solver have been used to evaluate our theoretical results.
2

Intermittent transport processes on surfaces / Processus de transport intemittent sur surfaces

Phun, Xuan Lan 25 November 2014 (has links)
Comment les protéïnes trouvent-elles leur chemin vers les rares endroits des molécules d’ADN où elles peuvent perpétuer le processus de vie ? De nombreuses études récentes tendent à prouver que seule une dynamique intermittente, c’est à dire à (au moins) deux régimes permet ce processus. L’objet principal de cette thèse est une étude rigoureuse d’un modèle simplifié de dynamique intermittente. Dans ce modèle la molécule alterne des dynamiques browniennes dans le "bulk" et sur la "surface" (i.e. la molécule d’ADN dans l’exemple plus haut) jusqu’à ce qu’elle atteigne sa cible, une petite fenêtre sur la surface: le temps passé par la molécule à la surface est naturellement modélisé comme une variable exponentielle de paramètre λ. Le principal résultat de la thèse est que quels que soient les paramètres, la recherche purement "par le bulk" n’est jamais optimale, ce qui légitime la thèse de la dynamique intermittente. On y caractérise aussi le cas où le temps optimal est atteint pour λ > 0. L’outil mathématique nouveau est l’introduction d’un opérateur autoadjoint et de sa base orthonormée de vecteurs propres. Cette étude permet d’obtenir un développement asymptotique à λ grand du temps moyen d’atteinte de la cible. Par ailleurs, un modèle nouveau est introduit: c’est celui du tore qui porte un paramètre supplémentaire, à savoir son module. Il est montre dans cette thèse que certaines valeurs du module conduisent à prouver que la stratégie intermittente est considérablement meilleure que celle de la pure diffusion dans le bulk. / How do proteins find their way towards the rare places on DNA molecules where they need to go in order to perpetuate the life process ? Many recent works tend to show that only an intermittent dynamics, that is a dynamics with two or more regimes, allows this process. The main goal of this PhD is a rigorous study of a simplified model of intermittent dynamics. In this model the molecule alternates diffusion in the bulk with a different kind of diffusion on the surface until it reaches its target consisting in a small window on the surface. The time spent by the molecule on the surface is naturally modeled as following an exponential law with parameter λ. The main result of this thesis is to show that, whatever the parameters are, a pure bulk strategy is never optimal, thus reinforcing the hypothesis of intermittent dynamics. One also characterizes the case where the optimal timed is attained for λ > 0. The new mathematical tool is the introduction of a self-adjoint operator and the use of its orthonormal basis of eigenvectors. This tool allows to obtain a precise asymptotic behavior of the mean exit time for λ large. Besides that a new geometrical model is developed, called the torus model. This new model carries a new parameter, namely its modulus. It is shown in this thesis that for some values of the modulus the optimized exit time is significantly (allowing experimental checking for instance) shorter than the pure bulk search.

Page generated in 0.0692 seconds