Spelling suggestions: "subject:"7surfaces déformation"" "subject:"desurfaces déformation""
1 |
Motion Capture of Deformable Surfaces in Multi-View Studios / Acquisition de surfaces déformables à partir d'un système multicaméra calibréCagniart, Cédric 16 July 2012 (has links)
Cette thèse traite du suivi temporel de surfaces déformables. Ces surfaces sont observées depuis plusieurs points de vue par des caméras qui capturent l'évolution de la scène et l'enregistrent sous la forme de vidéos. Du fait des progrès récents en reconstruction multi-vue, cet ensemble de vidéos peut être converti en une série de clichés tridimensionnels qui capturent l'apparence et la forme des objets dans la scène. Le problème au coeur des travaux rapportés par cette thèse est de complémenter les informations d'apparence et de forme avec des informations sur les mouvements et les déformations des objets. En d'autres mots, il s'agit de mesurer la trajectoire de chacun des points sur les surfaces observées. Ceci est un problème difficile car les vidéos capturées ne sont que des séquences d'images, et car les formes reconstruites à chaque instant le sont indépendemment les unes des autres. Si le cerveau humain excelle à recréer l'illusion de mouvement à partir de ces clichés, leur utilisation pour la mesure automatisée du mouvement reste une question largement ouverte. La majorité des précédents travaux sur le sujet se sont focalisés sur la capture du mouvement humain et ont bénéficié de la nature articulée de ce mouvement qui pouvait être utilisé comme a-priori dans les calculs. La spécificité des développements présentés ici réside dans la généricité des méthodes qui permettent de capturer des scènes dynamiques plus complexes contenant plusieurs acteurs et différents objets déformables de nature inconnue a priori. Pour suivre les surfaces de la façon la plus générique possible, nous formulons le problème comme celui de l'alignement géométrique de surfaces, et déformons un maillage de référence pour l'aligner avec les maillages indépendemment reconstruits de la séquence. Nous présentons un ensemble d'algorithmes et d'outils numériques intégrés dans une chaîne de traitements dont le résultat est un maillage animé. Notre première contribution est une méthode de déformation de maillage qui divise la surface en une collection de morceaux élémentaires de surfaces que nous nommons patches. Ces patches sont organisés dans un graphe de déformation, et une force est appliquée sur cette structure pour émuler une déformation élastique par rapport à la pose de référence. Comme seconde contribution, nous présentons une formulation probabiliste de l'alignement de surfaces déformables qui modélise explicitement le bruit dans le processus d'acquisition. Pour finir, nous étudions dans quelle mesure les a-prioris sur la nature articulée du mouvement peuvent aider, et comparons différents modèles de déformation à une méthode de suivi de squelette. Les développements rapportés par cette thèse sont validés par de nombreuses expériences sur une variété de séquences. Ces résultats montrent qu'en dépit d'a-prioris moins forts sur les surfaces suivies, les idées présentées permettent de traiter des scènes complexes contenant de multiples objets tout en se comportant de façon robuste vis-a-vis de données fragmentaires et d'erreurs de reconstruction. / In this thesis we address the problem of digitizing the motion of three-dimensional shapes that move and deform in time. These shapes are observed from several points of view with cameras that record the scene's evolution as videos. Using available reconstruction methods, these videos can be converted into a sequence of three-dimensional snapshots that capture the appearance and shape of the objects in the scene. The focus of this thesis is to complement appearance and shape with information on the motion and deformation of objects. In other words, we want to measure the trajectory of every point on the observed surfaces. This is a challenging problem because the captured videos are only sequences of images, and the reconstructed shapes are built independently from each other. While the human brain excels at recreating the illusion of motion from these snapshots, using them to automatically measure motion is still largely an open problem. The majority of prior works on the subject has focused on tracking the performance of one human actor, and used the strong prior knowledge on the articulated nature of human motion to handle the ambiguity and noise inherent to visual data. In contrast, the presented developments consist of generic methods that allow to digitize scenes involving several humans and deformable objects of arbitrary nature. To perform surface tracking as generically as possible, we formulate the problem as the geometric registration of surfaces and deform a reference mesh to fit a sequence of independently reconstructed meshes. We introduce a set of algorithms and numerical tools that integrate into a pipeline whose output is an animated mesh. Our first contribution consists of a generic mesh deformation model and numerical optimization framework that divides the tracked surface into a collection of patches, organizes these patches in a deformation graph and emulates elastic behavior with respect to the reference pose. As a second contribution, we present a probabilistic formulation of deformable surface registration that embeds the inference in an Expectation-Maximization framework that explicitly accounts for the noise and in the acquisition. As a third contribution, we look at how prior knowledge can be used when tracking articulated objects, and compare different deformation model with skeletal-based tracking. The studies reported by this thesis are supported by extensive experiments on various 4D datasets. They show that in spite of weaker assumption on the nature of the tracked objects, the presented ideas allow to process complex scenes involving several arbitrary objects, while robustly handling missing data and relatively large reconstruction artifacts.
|
2 |
Contributions au recalage et à la reconstruction 3D de surfaces déformablesGay-Bellile, Vincent 10 November 2008 (has links) (PDF)
Cette thèse porte sur le développement d'outils permettant le recalage d'images d'une surface déformable et la reconstruction tridimensionnelle de surfaces déformables à partir d'images prises par une seule caméra. Les surfaces que nous souhaitons traiter sont typiquement un visage ou une feuille de papier. Ces problématiques sont mal posées lorsque seule l'information présente dans les images est exploitée. Des informations a priori sur les déformations physiquement admissibles de la surface observée doivent être définies. Elles diffèrent en fonction du problème étudié. Par exemple, pour une feuille de papier, la courbure Gaussienne évaluée en chacun de ces points est nulle, cette propriété n'est pas valide pour un visage. Les applications visées sont l'insertion réaliste de logo 2D, de texte et aussi d'objets virtuels 3D dans des vidéos présentant une surface déformable. La première partie de cette thèse est consacrée au recalage d'images par modèles déformables. Après avoir brièvement introduit les notions de base sur les fonctions de déformation et sur leur estimation à partir de données images, nous donnons deux contributions. La première est un algorithme de recalage d'images d'une surface déformable, qui est efficace en terme de temps de calcul. Nous proposons une paramétrisation par primitives des fonctions de déformation permettant alors leur estimation par des algorithmes compositionnels habituellement réservés aux transformations formant un groupe. La deuxième contribution est la modélisation explicite des auto-occultations, en imposant la contraction de la fonction de déformation le long de la frontière d'auto-occultation. La deuxième partie de cette thèse aborde le problème de la reconstruction tridimensionnelle monoculaire de surfaces déformables. Nous nous basons sur le modèle de faible rang : les déformations sont approximées par une combinaison linéaire de modes de déformation inconnus. Nous supposons que ces derniers sont ordonnés par importance en terme d'amplitude de déformation capturée dans les images. Il en résulte une estimation hiérarchique des modes, facilitant l'emploi d'un modèle de caméra perspectif, la sélection automatique du nombre de modes et réduisant certaines ambiguïtés inhérentes au modèle. Nous explorons finalement la capture des déformations d'une surface peu texturée à partir de données issues d'un capteur 3D. L'information présente au niveau des contours de la surface est notamment utilisée. Nous avons implanté les différentes contributions décrites ci-dessous. Elles sont testées et comparées à l'état de l'art sur des données réelles et synthétiques. Les résultats sont présentés tout au long du tapuscrit.
|
3 |
Contributions aux problèmes de l'étalonnage extrinsèque d'affichages semi-transparents pour la réalité augmentée et de la mise en correspondance dense d'images / Contributions to the problems of extrinsic calibration semitransparent displays for augmented reality and dense mapping imagesBraux-Zin, Jim 26 September 2014 (has links)
La réalité augmentée consiste en l'insertion d'éléments virtuels dans une scène réelle, observée à travers un écran. Les systèmes de réalité augmentée peuvent prendre des formes différentes pour obtenir l'équilibre désiré entre trois critères : précision, latence et robustesse. On identifie trois composants principaux : localisation, reconstruction et affichage. Nous nous concentrons sur l'affichage et la reconstruction. Pour certaines applications, l'utilisateur ne peut être isolé de la réalité. Nous proposons un système sous forme de "tablette augmentée" avec un écran semi transparent, au prix d'un étalonnage adapté. Pour assurer l'alignement entre augmentations et réalité, il faut connaître les poses relatives de l'utilisateur et de la scène observée par rapport à l'écran. Deux dispositifs de localisation sont nécessaires et l'étalonnage consiste à calculer la pose de ces dispositifs par rapport à l'écran. Le protocole d'étalonnage est le suivant : l'utilisateur renseigne les projections apparentes dans l'écran de points de référence d'un objet 3D connu ; les poses recherchées minimisent la distance 2D entre ces projections et celles calculées par le système. Ce problème est non convexe et difficile à optimiser. Pour obtenir une estimation initiale, nous développons une méthode directe par l'étalonnage intrinsèque et extrinsèque de caméras virtuelles. Ces dernières sont définies par leurs centres optiques, confondus avec les positions de l'utilisateur, ainsi que leur plan focal, constitué par l'écran. Les projections saisies par l'utilisateur constituent alors les observations 2D des points de référence dans ces caméras virtuelles. Un raisonnement symétrique permet de considérer des caméras virtuelles centrées sur les points de référence de l'objet, "observant" les positions de l'utilisateur. Ces estimations initiales sont ensuite raffinées par ajustement de faisceaux. La reconstruction 3D est basée sur la triangulation de correspondances entre images. Ces correspondances peuvent être éparses lorsqu'elles sont établies par détection, description et association de primitives géométriques ou denses lorsqu'elles sont établies par minimisation d'une fonction de coût sur toute l'image. Un champ dense de correspondance est préférable car il permet une reconstruction de surface, utile notamment pour une gestion réaliste des occultations en réalité augmentée. Les méthodes d'estimation d'un tel champ sont basées sur une optimisation variationnelle, précise mais sensible aux minimums locaux et limitée à des images peu différentes. A l'opposé, l'emploi de descripteurs discriminants peut rendre les correspondances éparses très robustes. Nous proposons de combiner les avantages des deux approches par l'intégration d'un coût basé sur des correspondances éparses de primitives à une méthode d'estimation variationnelle dense. Cela permet d'empêcher l'optimisation de tomber dans un minimum local sans dégrader la précision. Notre terme basé correspondances éparses est adapté aux primitives à coordonnées non entières, et peut exploiter des correspondances de points ou de segments tout en filtrant implicitement les correspondances erronées. Nous proposons aussi une détection et gestion complète des occultations pour pouvoir mettre en correspondance des images éloignées. Nous avons adapté et généralisé une méthode locale de détection des auto-occultations. Notre méthode produit des résultats compétitifs avec l'état de l'art, tout en étant plus simple et plus rapide, pour les applications de flot optique 2D et de stéréo à large parallaxe. Nos contributions permettent d'appliquer les méthodes variationnelles à de nouvelles applications sans dégrader leur performance. Le faible couplage des modules permet une grande flexibilité et généricité. Cela nous permet de transposer notre méthode pour le recalage de surfaces déformables avec des résultats surpassant l'état de l'art, ouvrant de nouvelles perspectives. / Augmented reality is the process of inserting virtual elements into a real scene, observed through a screen. Augmented Reality systems can take different forms to get the desired balance between three criteria: accuracy, latency and robustness. Three main components can be identified: localization, reconstruction and display. The contributions of this thesis are focused on display and reconstruction. Most augmented reality systems use non-transparent screens as they are widely available. However, for critical applications such as surgery or driving assistance, the user cannot be ever isolated from reality. We answer this problem by proposing a new “augmented tablet” system with a semi-transparent screen. Such a system needs a suitable calibration scheme:to correctly align the displayed augmentations and reality, one need to know at every moment the poses of the user and the observed scene with regard to the screen. Two tracking devices (user and scene) are thus necessary, and the system calibration aims to compute the pose of those devices with regard to the screen. The calibration process set up in this thesis is as follows: the user indicates the apparent projections in the screen of reference points from a known 3D object ; then the poses to estimate should minimize the 2D on-screen distance between those projections and the ones computed by the system. This is a non-convex problem difficult to solve without a sane initialization. We develop a direct estimation method by computing the extrinsic parameters of virtual cameras. Those are defined by their optical centers which coincide with user positions, and their common focal plane consisting of the screen plane. The user-entered projections are then the 2D observations of the reference points in those virtual cameras. A symmetrical thinking allows one to define virtual cameras centered on the reference points, and “looking at” the user positions. Those initial estimations can then be refined with a bundle adjustment. Meanwhile, 3D reconstruction is based on the triangulation of matches between images. Those matches can be sparse when computed by detection and description of image features or dense when computed through the minimization of a cost function of the whole image. A dense correspondence field is better because it makes it possible to reconstruct a 3D surface, useful especially for realistic handling of occlusions for augmented reality. However, such a field is usually estimated thanks to variational methods, minimizing a convex cost function using local information. Those methods are accurate but subject to local minima, thus limited to small deformations. In contrast, sparse matches can be made very robust by using adequately discriminative descriptors. We propose to combine the advantages of those two approaches by adding a feature-based term into a dense variational method. It helps prevent the optimization from falling into local minima without degrading the end accuracy. Our feature-based term is suited to feature with non-integer coordinates and can handle point or line segment matches while implicitly filtering false matches. We also introduce comprehensive handling of occlusions so as to support large deformations. In particular, we have adapted and generalized a local method for detecting selfocclusions. Results on 2D optical flow and wide-baseline stereo disparity estimation are competitive with the state of the art, with a simpler and most of the time faster method. This proves that our contributions enables new applications of variational methods without degrading their accuracy. Moreover, the weak coupling between the components allows great flexibility and genericness. This is the reason we were able to also transpose the proposed method to the problem of non-rigid surface registration and outperforms the state of the art methods.
|
Page generated in 0.0772 seconds