Spelling suggestions: "subject:"asurgical workflow 2analysis"" "subject:"asurgical workflow 3analysis""
1 |
Surgical Workflow AnticipationYuan, Kun 12 January 2022 (has links)
As a non-robotic minimally invasive surgery, endoscopic surgery is one of the widely used surgeries for the medical domain to reduce the risk of infection, incisions, and the discomfort of the patient. The endoscopic surgery procedure, also named surgical workflow in this work, can be divided into different sub-phases. During the procedure, the surgeon inserts a thin, flexible tube with a video camera through a small incision or a natural orifice like the mouth or nostrils. The surgeon can utilize tiny surgical instruments while viewing organs on the computer monitor through these tubes. The surgery only allows a limited number of instruments simultaneously appearing in the body, requiring a sufficient instrument preparation method. Therefore, surgical workflow anticipation, including surgical instrument and phase anticipation, is essential for an intra-operative decision-support system. It deciphers the surgeon's behaviors and the patient's status to forecast surgical instrument and phase occurrence before they appear, supporting instrument preparation and computer-assisted intervention (CAI) systems. In this work, we investigate an unexplored surgical workflow anticipation problem by proposing an Instrument Interaction Aware Anticipation Network (IIA-Net). Spatially, it utilizes rich visual features about the context information around the instrument, i.e., instrument interaction with their surroundings. Temporally, it allows for a large receptive field to capture the long-term dependency in the long and untrimmed surgical videos through a causal dilated multi-stage temporal convolutional network. Our model enforces an online inference with reliable predictions even with severe noise and artifacts in the recorded videos. Extensive experiments on Cholec80 dataset demonstrate the performance of our proposed method exceeds the state-of-the-art method by a large margin (1.40 v.s. 1.75 for inMAE and 2.14 v.s. 2.68 for eMAE).
|
2 |
3D detection and pose estimation of medical staff in operating rooms using RGB-D images / Détection et estimation 3D de la pose des personnes dans la salle opératoire à partir d'images RGB-DKadkhodamohammadi, Abdolrahim 01 December 2016 (has links)
Dans cette thèse, nous traitons des problèmes de la détection des personnes et de l'estimation de leurs poses dans la Salle Opératoire (SO), deux éléments clés pour le développement d'applications d'assistance chirurgicale. Nous percevons la salle grâce à des caméras RGB-D qui fournissent des informations visuelles complémentaires sur la scène. Ces informations permettent de développer des méthodes mieux adaptées aux difficultés propres aux SO, comme l'encombrement, les surfaces sans texture et les occlusions. Nous présentons des nouvelles approches qui tirent profit des informations temporelles, de profondeur et des vues multiples afin de construire des modèles robustes pour la détection des personnes et de leurs poses. Une évaluation est effectuée sur plusieurs jeux de données complexes enregistrés dans des salles opératoires avec une ou plusieurs caméras. Les résultats obtenus sont très prometteurs et montrent que nos approches surpassent les méthodes de l'état de l'art sur ces données cliniques. / In this thesis, we address the two problems of person detection and pose estimation in Operating Rooms (ORs), which are key ingredients in the development of surgical assistance applications. We perceive the OR using compact RGB-D cameras that can be conveniently integrated in the room. These sensors provide complementary information about the scene, which enables us to develop methods that can cope with numerous challenges present in the OR, e.g. clutter, textureless surfaces and occlusions. We present novel part-based approaches that take advantage of depth, multi-view and temporal information to construct robust human detection and pose estimation models. Evaluation is performed on new single- and multi-view datasets recorded in operating rooms. We demonstrate very promising results and show that our approaches outperform state-of-the-art methods on this challenging data acquired during real surgeries.
|
Page generated in 0.0689 seconds