Spelling suggestions: "subject:"surrogate model / metamodel"" "subject:"surrogate model / betamodel""
1 |
Multiscale modeling of multimaterial systems using a Kriging based approachSen, Oishik 01 December 2016 (has links)
The present work presents a framework for multiscale modeling of multimaterial flows using surrogate modeling techniques in the particular context of shocks interacting with clusters of particles. The work builds a framework for bridging scales in shock-particle interaction by using ensembles of resolved mesoscale computations of shocked particle laden flows. The information from mesoscale models is “lifted” by constructing metamodels of the closure terms - the thesis analyzes several issues pertaining to surrogate-based multiscale modeling frameworks.
First, to create surrogate models, the effectiveness of several metamodeling techniques, viz. the Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. The rate of convergence of the error when used to reconstruct hypersurfaces of known functions is studied. For sufficiently large number of training points, Stochastic Collocation methods generally converge faster than the other metamodeling techniques, while the DKG method converges faster when the number of input points is less than 100 in a two-dimensional parameter space. Because the input points correspond to computationally expensive micro/meso-scale computations, the DKG is favored for bridging scales in a multi-scale solver.
After this, closure laws for drag are constructed in the form of surrogate models derived from real-time resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the least number of mesoscale simulations. It is shown that unlike the DKG method, the MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments.
In macroscale models for shock-particle interactions, Subgrid Particle Reynolds’ Stress Equivalent (SPARSE) terms arise because of velocity fluctuations due to fluid-particle interaction in the subgrid/meso scales. Mesoscale computations are performed to calculate the SPARSE terms and the kinetic energy of the fluctuations for different values of Mach Number and particle volume fraction. Closure laws for SPARSE terms are constructed using the MBKG method. It is found that the directions normal and parallel to those of shock propagation are the principal directions of the SPARSE tensor. It is also found that the kinetic energy of the fluctuations is independent of the particle volume fraction and is 12-15% of the incoming shock kinetic energy for higher Mach Numbers.
Finally, the thesis addresses the cost of performing large ensembles of resolved mesoscale computations for constructing surrogates. Variable fidelity techniques are used to construct an initial surrogate from ensembles of coarse-grid, relative inexpensive computations, while the use of resolved high-fidelity simulations is limited to the correction of initial surrogate. Different variable-fidelity techniques, viz the Space Mapping Method, RBFs and the MBKG methods are evaluated based on their ability to correct the initial surrogate. It is found that the MBKG method uses the least number of resolved mesoscale computations to correct the low-fidelity metamodel. Instead of using 56 high-fidelity computations for obtaining a surrogate, the MBKG method constructs surrogates from only 15 resolved computations, resulting in drastic reduction of computational cost.
|
2 |
Fiabilité résiduelle des ouvrages en béton dégradés par réaction alcali-granulat : application au barrage hydroélectrique de Song Loulou / Residual reliability of alkali-aggregate reaction affected concrete structures : application to the song Loulou hydroelectric damFtatsi Mbetmi, Guy-De-Patience 31 August 2018 (has links)
Ce travail de thèse propose une méthodologie multi-échelle basée sur l'utilisation de modèles de substitution fonction de variables aléatoires, pour évaluer la fiabilité résiduelle d'ouvrages en béton atteints de réaction alcali-granulat (RAG), dans l'optique d'une meilleure maintenance. Les modèles de substitution, basés sur des développements en chaos de polynômes des paramètres d'une fonction de forme (sigmoïde dans les cas traités), ont été constitués à plusieurs échelles, afin notamment de réduire les temps de calculs des modèles physiques sous-jacents. A l'échelle microscopique, le modèle de RAG employé est celui développé par Multon, Sellier et Cyr en 2009, comprenant initialement une vingtaine de variables aléatoires potentielles. A l'issue d'une analyse de sensibilité de Morris, le modèle de substitution permet de reproduire la courbe de gonflement dans le temps du volume élémentaire représentatif en fonction de neuf variables aléatoires. L'utilisation du modèle de substitution construit, pour la prédiction des effets mécaniques du gonflement dû à la RAG sur une éprouvette, a nécessité de prendre en compte l'anisotropie de ces effets en améliorant les fonctions poids proposées par Saouma et Perotti en 2006. L'échelle de l'éprouvette étant validée par la confrontation des prédictions aux données expérimentales des travaux de thèse de Multon, une application à l'échelle du barrage de Song Loulou a été entreprise. Le calcul du comportement thermo-chemo-mécanique d'une pile d'évacuateur de crues, dont les résultats en déplacements ont pu être confrontés aux données d'auscultation fournies par l'entreprise AES-SONEL (devenue ENEO), a été réalisé. Des modèles de substitution ont été construits ensuite à l'échelle de la structure afin d'obtenir les déplacements aux points d'intérêt, liés aux états limites de fonctionnement des évacuateurs, et procéder ainsi à l'estimation de la fiabilité résiduelle du barrage. Les calculs d'analyse de sensibilité et la construction des modèles de substitution ont été implémentés en Fortran, Java et OpenTURNS Les calculs sur éprouvette et pile de barrage ont été effectués sous Cast3M. / This work proposes a multi-scale methodology based on the use of surrogate models function of random variables, to evaluate the residual reliability of concrete structures suffering from alkali-aggregate reaction (AAR), for a better maintenance purpose. Surrogate models, based on polynomial chaos expansion of the parameters of a shape function (sigmoid in the studied cases), have been constituted at several scales, in particular in order to reduce computation time of the underlying physical models. At the microscopic scale, the AAR model employed is that developed by Multon, Sellier and Cyr in 2009, initially comprising about twenty potential random variables. At the end of a Morris sensitivity analysis, the surrogate model enables to reproduce the expansion curve over time of the representative elementary volume as a function of nine random variables. The use of the built-in surrogate model in predicting the mechanical effects of AAR expansion on a concrete core required to take into account the anisotropy of these effects by improving the weight functions proposed by Saouma and Perotti in 2006. The core's scale being validated by the comparison of the predictions with the experimental data of Multon's thesis work, an application at the scale of the Song Loulou dam was undertaken. The computation of the thermo-chemo-mechanical behavior of a spillway stack, whose results in displacement could be compared with the auscultation data provided by the company AES-SONEL (now ENEO), was realized. Surrogate models were then constructed at the scale of the structure to obtain displacements at the points of interest, related to the operating limit states of the spillways, and thus to estimate the residual reliability of the dam. The sensitivity analysis computations as well as the construction of the surrogate models were implemented in Fortran, Java and OpenTURNS. Computations on concrete cores and Song Loulou dam spillway were performed under Cast3M.
|
Page generated in 0.0724 seconds