• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Actual Entities: A Control Method for Unmanned Aerial Vehicles

Absetz, Erica 25 April 2013 (has links)
The focus of this thesis is on Actual Entities, a concept created by the philosopher Alfred North Whitehead, and how the concept can be applied to Unmanned Aerial Vehicles as a behavioral control method. Actual Entities are vector based, atomic units that use a method called prehension to observe their environment and react with various actions. When combining multiple Actual Entities a Colony of Prehending Entities is created; when observing their prehensions an intelligent behavior emerges. By applying the characteristics of Actual Entities to Unmanned Aerial Vehicles, specifically in a situation where they are searching for targets, this emergent, intelligent behavior can be seen as they search a designated area and locate specified targets. They will alter their movements based on the prehensions of the environment, surrounding Unmanned Aerial Vehicles, and targets.
2

Using Ant Colonization Optimization to Control Difficulty in Video Game AI.

Courtney, Joshua 01 May 2010 (has links)
Ant colony optimization (ACO) is an algorithm which simulates ant foraging behavior. When ants search for food they leave pheromone trails to tell other ants which paths to take to find food. ACO has been adapted to many different problems in computer science: mainly variations on shortest path algorithms for graphs and networks. ACO can be adapted to work as a form of communication between separate agents in a video game AI. By controlling the effectiveness of this communication, the difficulty of the game should be able to be controlled. Experimentation has shown that ACO works effectively as a form of communication between agents and supports that ACO is an effective form of difficulty control. However, further experimentation is needed to definitively show that ACO is effective at controlling difficulty and to show that it will also work in a large scale system.

Page generated in 0.044 seconds