Spelling suggestions: "subject:"swimming trawl stroke"" "subject:"swimming crawl stroke""
1 |
Optimizing freestyle flip-turn techniquePatz, Amy E January 2005 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references (leaves 48-49). / vi, 49 leaves, bound ill. 29 cm
|
2 |
The influence of controlled frequency breathing on blood lactate levels during graded front crawl stroke swimmingDrummond, Micah J. 01 January 2001 (has links)
Controlled frequency breathing (CFB) is a training technique used by swimmers in an effort to limit oxygen availability to the body and stimulate anaerobic metabolism. During CFB, a swimmer restricts breathing to one breath every six, seven, or even eight strokes per breath. The purpose of this study was to determine tb.e influen<;:e of CFB on blood lactate, heart rate, and stroke rate during front crawl stroke swimming. A maximal exertion test was used to determine peak swimming velocity. Based on this maximal test, five different workloads were used to compare CFB and normal breathing (NB). Subjects swam three-minute workloads at 55%,65%,75%, 85%, and 95% of maximal effort with two minutes rest between each workload. Blood lactate and heart rate were measured immediately after each workload and stroke rate was counted manually. Subjects were assigned to breathe normally (NB) or to restrict their breathing to one breath every eight strokes (CFB). Breathing conditions were randomly assigned. Multivariate analysis was used to compare the blood lactate, heart rate, and stroke rate between NB and CFB. Tukey's post hoc test was used when F-values were significant (p<0.05). Twenty-eight subjects (18 females, 10 males) completed the entire protocol. As expected there were significant main effects for the heart rate and blood lactate responses to increasing workloads (p<0.01). However, CFB did not alter blood lactate levels when compared to NB. Interestingly, heart rate (p=0.014) was lower and stroke rate (p=0.011) was higher in the CFB condition when compared to N'B.
|
3 |
The effects of stroke rate and stroke length on upper quadrant stroke patterns in competitive swimmingUpshaw, Kris January 1995 (has links)
The purpose of this study was to describe women collegiate swimmers' armstroke sequence at selected velocities. In addition, this study was designed to determine the timing angle during the course of a stroke cycle. Seven members of the Ball State University Women's Swim Team were asked to participate in this study. The test consisted of the subject swimming approximately fifteen meters freestyle (front crawl) at stroke rates of 24, 30, 40, 48, 60 strokes per minute. The subjects attempted three trials at each stroke rate, on a continuum from slow to fast. The following parameters were determined from video analysis: stroke length (SL), velocity (m/s), time of one complete stroke cycle (SCT), timing between the arm cycles (RAE), recovery arm entry as a percentage of SCT (RAE%) and the timing angle. A correlation between the timing angle and V of r = 0.48 was found to be significant at the 0.05 level. A correlation between the SCT and the timing angle of r = -0.62 was found to be significant at the 0.05 level. A correlation of r = -0.43 between SL and the timing angle of less than 90 degrees is believed to benefit theangle was found to be significant at the 0.05 level. This indicates that as the swimmers' SCT decreased, the timing angle increased. And, as the swimmers' SL decreased the timing angle increased. It appears that timing angles increase with increasing V. The mean timing angle for ninety trials was 66.03 degrees with a SD of 17.68. This study indicates that women collegiate swimmers use a timing angle of less than 90 degrees. A timing swimmers' body position, balance and SL. / School of Physical Education
|
4 |
Kinematic analysis of freestyle and backstroke flip-turns in competitive swimmingLindley, Steven L. January 2001 (has links)
The primary purpose of this study was to gain a better understanding of the turn interval and the factors that influence turn performance. A secondary purpose was to investigate the relationship between turn time, the components that influence turn time, and performance in competitive swimming. Fifty-eight swimmers (24 female, 34 male) from four NCAA Division I schools were videotaped in the 100 and 200 yd freestyle and backstroke events during three collegiate competitions. The freestyle was shown to be significantly different from the backstroke in race time, turn time, and time during the in phase of the turn for both genders in the 100 and 200 yard events. Significant positive correlations were found between turn time and race time across both genders and all four events. Inspecting the velocity curves of the turns allowed the key outphase variables to be defined. Turn time is an important determinant of race time in collegiate swimming. Using the dolphin kick technique during a turn causes large fluctuations in velocity during the active glide phase of the turn. / School of Physical Education
|
Page generated in 0.0748 seconds