Spelling suggestions: "subject:"sylvilagus -- florida -- florida keys"" "subject:"sylvilagus -- florida -- florida reys""
1 |
Estimating Diet And Food Selectivity Of The Lower Keys Marsh Rabbit Using Stable Isotope AnalysisGordon, Matthew James 01 January 2010 (has links)
Understanding the effect of food abundance on feeding behavior can benefit conservation efforts in many ways, such as to determine whether impacted environments need food supplementation, whether different locations of threatened species contain different food abundances, or whether reintroduction sites are missing key components of a species’ diet. I studied the relationship between feeding behavior and food abundance in the Lower Keys marsh rabbit (Sylvilagus palustris hefneri), an endangered subspecies endemic to the lower Florida Keys. Specifically, my study set out to measure the relative abundance of the primary plants within the natural habitat of the Lower Keys marsh rabbit and estimate the proportion of each of these plants within the rabbit’s diet. With this information, I tested the following hypotheses: first, the Lower Keys marsh rabbit selectively feeds on specific plants; second, that diet does not differ among sites; and third, that diet is not affected by food abundance. Using stable isotope analysis, I determined that two plants were prominent in the rabbit’s diet: a shrub, Borrichia frutescens, and a grass, Spartina spartinae. These two species were prominent in the rabbit’s diet in most patches, even where they were relatively rare, suggesting the rabbits are indeed selectively feeding on these species. In addition, although diet did differ among patches, selective feeding was apparent in all cases. Overall, this study determined that certain food types are important food sources for the federally endangered Lower Keys marsh rabbit and that these rabbits do not feed on plants based on plant abundance. This knowledge can be directly applied to reintroduction and restoration efforts for the Lower Keys marsh rabbit. More generally, the methods used in this study can be applied to other species of concern in order to address questions associated with diet requirements and foraging behavior.
|
2 |
Taxonomy Versus Phylogeny Phylogeography Of Marsh Rabbits Without Hopping To ConclusionsTursi, Rosanna M. 01 January 2010 (has links)
Subspecific taxonomic designations solely based on morphological characters can often lead to erroneous assumptions about the evolutionary history of populations. This study sought to investigate evolutionary questions and conservation implications associated with morphological subspecific designations of island populations. To this end, I focused my attention on the Lower Keys of Florida, a unique chain of islands with well-known geologic history and rich in endemic, endangered subspecies. I employed genetic analyses to evaluate historical variation and contemporary restriction of gene flow between the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) and its sister mainland taxa. A Bayesian phylogeny using 1063 base pairs of the mitochondrial cytochrome b gene did not recover reciprocal monophyly of the three named subspecies, and a 95% statistical parsimony haplotype network showed haplotypes being shared among subspecies. Furthermore, clustering analyses using 10 microsatellite loci identified a break within the Lower Keys, separating the western Lower Keys from the island of Big Pine Key. Surprisingly, Big Pine Key grouped with mainland populations and exhibits higher genetic diversity than the western Lower Keys islands. These unexpected findings suggest either a stepping-stone colonization pattern or recent gene flow between the mainland and Big Pine Key via natural dispersal or undocumented man-mediated transfers. Although these results suggest that subspecies designations within S. palustris are unwarranted, this study supports the designation western Lower Keys population as a discrete unit of conservation with regard to both DPS and ESU criteria. The importance of using several lines of evidence to uncover the evolutionary history of populations and implications for the conservation of island populations are discussed.
|
Page generated in 0.0707 seconds