• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 32
  • 10
  • 5
  • 2
  • 1
  • Tagged with
  • 132
  • 132
  • 30
  • 27
  • 26
  • 25
  • 24
  • 23
  • 18
  • 16
  • 16
  • 15
  • 14
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study of Dissipative Spots In Three-Component Reaction-Difussion Systems on Two-Dimensional Domains

Belzil-Lacasse, Christian January 2016 (has links)
Dissipative spots are found in physical experiments of many branches of natural science. In this thesis we use three-component reaction-diffusion systems on two-dimensional domains in order to generate these patterns. Using a dynamical system approach we proceed with a Fourier analysis on a linearized reaction-diffusion system in order to provide the bifurcation conditions for a given homogeneous state. We validate our results and establish it's limitations through numerical experiments. We report very interesting behavior during these simulations, notably hysteresis and multi-stability. We will then turn our attention to the relatively unexplored phenomenon of rotating spots. Based on previous work done for spiral waves, we investigate the effect of translational symmetry-breaking on a rotating spot mainly through careful numerical analysis.
12

Mechanisms of Cdc42 Polarization in Yeast

Woods, Benjamin Lee January 2016 (has links)
<p>Polarization is important for the function and morphology of many different cell types. The keys regulators of polarity in eukaryotes are the Rho-family GTPases. In the budding yeast Saccharomyces cerevisiae, which must polarize in order to bud and to mate, the master regulator is the highly conserved Rho GTPase, Cdc42. During polarity establishment, active Cdc42 accumulates at a site on the plasma membrane characterizing the “front” of the cell where the bud will emerge. The orientation of polarization is guided by upstream cues that dictate the site of Cdc42 clustering. However, in the absence of upstream cues, yeast can still polarize in a random direction during symmetry breaking. Symmetry breaking suggests cells possess an autocatalytic polarization mechanism that can amplify stochastic fluctuations of polarity proteins through a positive feedback mechanism.</p><p> Two different positive feedback mechanisms have been proposed to polarize Cdc42 in budding yeast. One model posits that Cdc42 activation must be localized to a site at the plasma membrane. Another model posits that Cdc42 delivery must be localized to a particular site at the plasma membrane. Although both mechanisms could work in parallel to polarize Cdc42, it is unclear which mechanism is critical to polarity establishment. We directly tested the predictions of the two positive feedback models using genetics and live microscopy. We found that localized Cdc42 activation is necessary for polarity establishment.</p><p> While this explains how active Cdc42 localizes to a particular site at the plasma membrane, it does not address how Cdc42 concentrates at that site. Several different mechanisms have been proposed to concentrate Cdc42. The GDI can extract Cdc42 from membranes and selective mobilize GDP-Cdc42 in the cytoplasm. It was proposed that selectively mobilizing GDP-Cdc42 in combination with local activation could locally concentrate total Cdc42 at the polarity site. Although the GDI is important for rapid Cdc42 accumulation at the polarity site, it is not essential to Cdc42 concentration. It was proposed that delivery of Cdc42 by actin-mediated vesicle can act as a backup pathway to concentrate Cdc42. However, we found no evidence for an actin-dependent concentrating pathway. Live microscopy experiments reveal that prenylated proteins are not restricted to membranes, and can enter the cytoplasm. We found that the GDI-independent concentrating pathway still requires Cdc42 to exchange between the plasma membrane and the cytoplasm, which is supported by computational modeling. In the absence of the GDI, we found that Cdc42 GAP became essential for polarization. We propose that the GAP limits GTP-Cdc42 leak into the cytoplasm, which would be prohibitive to Cdc42 polarization.</p> / Dissertation
13

Dynamické narušení symetrie v modelech se silnými yukawovskými interakcemi / Dynamical symmetry breaking in models with strong Yukawa interactions

Beneš, Petr January 2012 (has links)
Title: Dynamical symmetry breaking in models with strong Yukawa in- teractions Author: Petr Beneš Department: Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University Supervisor: Ing. Jiří Hošek, DrSc., Department of Theoretical Physics, Nu- clear Physics Institute, Academy of Sciences of the Czech Repub- lic Abstract: The primary aim of the thesis is to explore the possibility of spon- taneous symmetry breaking by strong Yukawa dynamics. Tech- nically, the symmetry is assumed to be broken by formation of symmetry-breaking parts of both the scalar and the fermion prop- agators, rather than by the scalar vacuum expectation values. The idea is first introduced on an example of a toy model with the underlying symmetry being an Abelian one and later applied to a realistic model of electroweak interaction. In addition, the thesis also deals with some more general, model-independent is- sues, applicable not only to the discussed model of strong Yukawa dynamics, but to a wider class of models with dynamical mass generation. First of these issues is the problem of fermion flavor mixing in the presence of fermion self-energies with a general mo- mentum dependence. It is in particular shown how to define the CKM matrix in such models and argued that it can come out in principle...
14

Spontaneous CP-Violation in Two Higgs Doublet Supersymmetric Models

Lebedev, Oleg 23 July 1998 (has links)
An alternative approach to the problem of CP-violation is presented. It is based on the possibility of spontaneous CP-breakdown in models with two Higgs doublets. General features of the phenomenon such as stability of the vacuum and the existence of a light axion are discussed. We investigate the feasibility of spontaneously broken CP in the minimal supersymmetric models - the MSSM and NMSSM. The latter is shown to be experimentally viable. The phenomenological implications of the model such as CP-violating effects in the kaon systems and a nonzero neutron electric dipole moment are studied. / Ph. D.
15

Construction of the Higgs Mechanism and the Lee-Quigg-Thacker-bound

Wilhelm, Franz January 2019 (has links)
In this paper the higgs mechanism for the standard model is constructed in steps. First by considering spontaneous breaking of discrete and continuous global gauge invariance. Then spontaneous breaking of local gauge invariance. These results are then used to construct the electroweak part of the standard model through application of the higgs mechanism. Finally, the LQT-upper bound of 1 TeV for the higgs mass is calculated through unitarity constraints. / I denna artikel konstrueras higgsmekanismen i standardmodellen stegvis. Först genom att beakta spontant symmetribrott av diskreta samt kontinuerliga globala gaugeinvarianser. Därefter spontant symmetribrott av lokala gaugeinvarianser. Dessa resultat används sedan för att konstruera den elektrosvaga delen av standardmodellen genom tillämpning av higgsmekanismen. Slutligen beräknas en övre gräns för higgsmassan, den så kallade LQT-gränsen, via unitaritetsbegränsingar.
16

Derivative expansions of the exact renormalisation group and SU(NN) gauge theory

Tighe, John Francis January 2001 (has links)
No description available.
17

A search for gauge mediated supersymmetry breaking using signal e'+e'-#->#..

Kelly, Mandy Sharon January 1998 (has links)
No description available.
18

A search for the Standard Model Higgs boson using the OPAL detector at LEP

Sang, W. M. January 1999 (has links)
No description available.
19

Spontaneous CP violation in the next-to-minimal supersymmetric standard model

Usai, Alessandro January 2000 (has links)
No description available.
20

Fermion Mass Generation without Spontaneous Symmetry Breaking

Ayyar, Venkitesh January 2016 (has links)
<p>The conventional mechanism of fermion mass generation in the Standard Model involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate mechanism for the generation of fermion masses that does not require SSB, in the context of lattice field theories. Being inherently strongly coupled, this mechanism requires a non-perturbative approach like the lattice approach.</p><p>In order to explore this mechanism, we study a simple lattice model with a four-fermion interaction that has massless fermions at weak couplings and massive fermions at strong couplings, but without any spontaneous symmetry breaking. Prior work on this type of mass generation mechanism in 4D, was done long ago using either mean-field theory or Monte-Carlo calculations on small lattices. In this thesis, we have developed a new computational approach that enables us to perform large scale quantum Monte-Carlo calculations to study the phase structure of this theory. In 4D, our results confirm prior results, but differ in some quantitative details of the phase diagram. In contrast, in 3D, we discover a new second order critical point using calculations on lattices up to size $ 60^3$. Such large scale calculations are unprecedented. The presence of the critical point implies the existence of an alternate mechanism of fermion mass generation without any SSB, that could be of interest in continuum quantum field theory.</p> / Dissertation

Page generated in 0.0514 seconds