Spelling suggestions: "subject:"aymmetry eie group"" "subject:"aymmetry eie croup""
1 |
Modèles LES invariants par groupes de symétries en écoulements turbulents anisothermes / Invariant LES Models via symmetry groups for turbulent non-isothermal flowsAl Sayed, Nazir 16 May 2011 (has links)
Comme le groupe de symétries de Lie des équations aux dérivées partielles représentent les propriétés physiques intrinsèques contenues dans les équations, il offre un outil efficace pour étudier et modéliser les phénomènes physiques. Ainsi, dans cette thèse, on se propose d’appliquer la théorie du groupe de symétries de Lie à la modélisation des écoulements anisothermes.On calcule alors des lois de paroi, et, plus généralement des lois d’échelle, pour la vitesse et la température dans le cas d’un écoulement parallèle. En fait, ces lois d’échelle se révèlent être simplement des solutions auto-similaires des équations de Navier-Stokes moyennées par rapport aux symétries des équations.Ensuite, par l’approche de la théorie des groupes de Lie, on construit une classe de modèles de sous-maille qui sont invariants par les symétries des équations de Navier-Stokes anisothermes.Ces modèles ont l’avantage de respecter les propriétés physiques des équations qui sont contenues dans les symétries. De plus, par cette approche, le modèle de flux de chaleur apparaît naturellement,sans qu’on ait besoin de faire appel à la notion de nombre de Prandtl de sous-maille,ce qui augmente la portée de ces modèles par rapport à la plupart des modèles existants. Par ailleurs, le comportement proche de la paroi de certains des modèles proposés est étudié. Enfin,des tests numériques en convection naturelle et en convection mixtes sont effectués. / Since the Lie group of a given partial differential equation, represent the intrinsic physical propertiesof the equation, it gives a strong tool for modeling its physical phenomenas. The mainpurpose of this thesis, is to apply the Lie group theory, in modeling non-isothermal flows. Therefore,we calculate wall laws and more generally scaling laws for the velocity and the temperatureof a parallel flow. In fact, these scaling laws are simply self-similar solutions of the Navier-Stokesequations averaged with respect to their symmetry.The approach of the Lie group theory, leads to a class of sub-grade models which are invariantvia the symmetries of the non-isothermal Navier-Stokes equations. These models respectthe physical properties contained in these symmetries. Moreover, via this approach the heat flowmodel appears naturally in this class, without introducing the notion of the Prandlt number,which is not the case for any other existing model. From the other side, the behavior near thewall of particular models in this class, is studied. Finally, numerical tests are done in both casesof the natural convection and the mixed one.
|
2 |
Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordreLamothe, Vincent 11 1900 (has links)
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir
des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée.
Elle est applicable directement à des systèmes non-homogènes et non-autonomes
sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite. / The objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of
several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic
conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
|
3 |
Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordreLamothe, Vincent 11 1900 (has links)
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir
des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée.
Elle est applicable directement à des systèmes non-homogènes et non-autonomes
sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite. / The objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of
several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic
conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
|
Page generated in 0.0622 seconds