• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Task dependent effects of baroreceptor unloading on motor cortical and corticospinal pathways

Buharin, Vasiliy E. 12 January 2015 (has links)
Corticospinal and intracortical excitability are excitability measures of the central nervous system responsible for motor generation, and are studied for their contribution to fine motor skill execution and learning. Since the need for proper execution of fine motor skills is ever-present and necessary for everyday life, identification of physiological pathways that may disrupt or enhance corticospinal and intracortical excitability is an important research topic. This thesis investigates the effects of baroreceptor unloading on corticospinal and intracortical excitability during various motor tasks. Baroreceptor unloading is a physiological response to common hemodynamic stress (e.g. hypovolemia and orthostasis). The motor tasks investigated are complete muscular relaxation, individual isometric low-force contraction of a muscle, and an isometric co-contraction of a muscle in a joint-stabilizing task. The effects of baroreceptor unloading on corticospinal and intracortical excitability appear to be very task specific. The results are discussed in view of available pharmacological and physiological research, and potential neural pathways for the observed effects are suggested. The overall conclusion is that baroreceptor unloading increases corticospinal excitability and decreases intracortical inhibition in a resting muscle, does not produce any observable effects during individual muscle activity, and decreases corticospinal excitability during joint-stabilizing co-contraction.

Page generated in 0.08 seconds