• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 46
  • 20
  • 18
  • 11
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 260
  • 260
  • 76
  • 74
  • 53
  • 53
  • 40
  • 39
  • 38
  • 34
  • 33
  • 32
  • 31
  • 29
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of plasticity in somatosensory processing following early life adverse events or nerve injury

Sun, Liting January 2012 (has links)
Chronic hypersensitive pain states can become established following sustained, repeated or earlier noxious stimuli and are notably difficult to treat, especially in cases where nerve injury contributes to the trauma. A key underlying reason is that a variety of plastic changes occur in the central nervous system (CNS) at spinal and potentially also supraspinal levels to upregulate functional activity in pain processing pathways. A major component of these changes is the enhanced function of excitatory amino acid receptors and related signalling pathways. Here we utilised rodent models of neuropathic and inflammatory pain to investigate whether evidence could be found for lasting hypersensitivity following neonatal (or adult) noxious stimuli, in terms of programming hyper-responsiveness to subsequent noxious stimuli, and whether we could identify underlying biochemical mechanisms. We found that neonatal (postnatal day 8, P8) nerve injury induced either long lasting mechanical allodynia or shorter lasting allodynia that nonetheless was associated with hyper-responsiveness to a subsequent noxious formalin stimulus at P42 despite recovery of normal mechanical thresholds. By developing a new micro-scale method for preparation of postsynaptic densities (PSD) from appropriate spinal cord quadrants we were able to show increased formalin-induced trafficking of GluA1- containing AMPA receptors into the PSD of animals that had received (and apparently recovered from) nerve injury at P8. This was associated with increased activation of ERK MAP kinase (a known mediator of GluA1 translocation) and increased expression of the ERK pathway regulator, Sos-1. Synaptic insertion of GluA1, as well as its interaction with a key partner protein 4.1N, was also seen in adults during a nerve injury-induced hypersensitive pain state. Further experiments were carried out to develop and optimise a new technological platform enabling fluorometric assessment of Ca2+ and membrane potential responses of acutely isolated CNS tissue; 30-100 μm tissue segments, synaptoneurosomes (synaptic entities comprising sealed and apposed pre- and postsynaptic elements) and 150 × 150 μm microslices. After extensive trials, specialised conditions were found that produced viable preparations, which could consistently deliver dynamic functional responses. Responsiveness of these new preparations to metabotropic and ionotropic receptor stimuli as well as nociceptive afferent stimulant agents was characterised in frontal cortex and spinal cord. These studies have provided new opportunities for assessment of plasticity in pain processing (and other) pathways in the CNS at the interface of in vivo and in vitro techniques. They allow for the first time, valuable approaches such as microscale measurement of synaptic insertion of GluA1 AMPA receptor subunits and ex vivo assessment of dynamic receptor-mediated Ca2+ and membrane potential responses.
12

Mechanisms underlying the induction of long-term depression in the CA1 region of the hippocampus

Kemp, Nicola January 1999 (has links)
No description available.
13

Cellular and synaptic pathophysiology in a rat model of Fragile X syndrome

Jackson, Adam January 2017 (has links)
Fragile X syndrome (FXS) is the most commonly inherited form of intellectual disability as well as a leading genetic cause of autism spectrum disorder. It is typically the result of a trinucleotide repeat expansion in the Fmr1 gene which leads to loss of the encoded protein, fragile X mental retardation protein (FMRP). Animal model studies over the past twenty years, mainly focusing on the Fmr1 knockout (KO) mouse, have uncovered several cellular and behavioural phenotypes associated with the loss of FMRP. Seminal work using the Fmr1 KO mouse found that metabotropic glutamate receptor mediated long-term depression (mGluR-LTD) in the hippocampus is both exaggerated (Huber et al., 2002) and independent of new protein synthesis (Nosyreva & Huber, 2006). These findings, together with studies focusing on other brain regions including the prefrontal cortex (Zhao et al., 2005) and amygdala (Suvrathan et al., 2010), have contributed to the ‘mGluR theory of FXS’ (Bear et al., 2004) which suggests that group 1 metabotropic receptor function is exaggerated in FXS. The development of genetically modified rats allows the modelling of FXS in an animal model with more complex cognitive and social behaviours than has been previously available. It also provides an opportunity for comparison of phenotypes across mammalian species that result from FMRP deletion. While the study of Fmr1 rats can significantly contribute to our understanding of FXS, we must first confirm the assumption that cellular phenotypes are conserved across mouse and rat models. In this thesis, we first aimed to test if the key cellular and synaptic phenotypes that contribute to the ‘mGluR theory of FXS’ are conserved in both the hippocampus and amygdala of Fmr1 KO rats. In agreement with mouse studies, we found mGluR-LTD was both enhanced and independent of new protein synthesis in Fmr1 KO rats. Similarly, group 1 mGluR long-term potentiation (LTP) was significantly decreased at both cortical and thalamic inputs to the lateral amygdala. Secondly, we investigated mPFC intrinsic excitability and synaptic plasticity in Fmr1 KO rats. The mPFC plays a key role in several of the cognitive functions that are affected in fragile X patients including attention, cognitive flexibility and anxiety (Goto et al., 2010). The regulation of mPFC plasticity and intrinsic excitability has also been associated with mGluR signalling. Here we found that intralaminar LTP in the mPFC showed an age-dependent deficit in Fmr1 KO rats. The mPFC also provides top down control of several cortical and subcortical regions through long-range connectivity. One pathway of interest in the study of FXS is mPFC-amygdala connectivity which is associated with fear learning and anxiety behaviours (Burgos- Robles et al., 2009). Using retrograde tracing, we showed layer 5 pyramidal neurons that provide long-range connections to the basal amygdala were intrinsically hypoexcitable in Fmr1 KO rats. This phenotype could possibly be explained through homeostatic changes in the axon initial segment which regulates neuronal excitability. This work provides the first evidence for conservation of cellular phenotypes associated with the loss of FMRP in mice and rats which will be key in the interpretation of future studies using Fmr1 KO rats. We also provide evidence of deficits in mPFC long-range connectivity to the basal amygdala, a pathway that is associated with FXS relevant behaviours. Together this highlights how study of the rat model of FXS can complement existing studies of Fmr1 KO mice as well as provide new insights into the pathophysiology resulting from the loss of FMRP. Some of this work was published in Till et al., 2015.
14

LEARNING-RELATED CHANGES IN THE FUNCTIONAL CONNECTIVITY WITHIN THE ZEBRA FINCH SONG-CONTROL CIRCUIT

Garst Orozco, Jonathan January 2014 (has links)
Many species-specific sensorimotor behaviors, such as speech in humans, emerge from the interplay between genetically defined developmental programs and sensory experience. How these processes interact during learning to shape motor circuits is not well understood. The zebra finch (Taeniopygia guttata), an oscine bird that learns to imitate the song of its tutor (usually the father), provides a uniquely tractable model for exploring this question. Song learning in zebra finches takes place during a discrete three-month period during which male juveniles progress from producing highly variable rudimentary sounds that are noisy and unstructured, to a highly stereotyped imitation of their tutor's song. Here I characterize learning-related changes in the functional connectivity within a motor cortex-analogue brain area (RA) that control song production.
15

Neuromodulation of heterosynaptic plasticity in mouse hippocampus

Connor, Steven Unknown Date
No description available.
16

Endocannabinoid Function in Hippocampal Synaptic Plasticity and Spatial Working Memory

Blaskovits, Farriss 12 September 2013 (has links)
Cannabis has been used medicinally for millennia, but the cannabinoid (CB) field exploded with the identification of its endogenous receptors and endocannabinoids (eCBs). In vitro experimentation established that eCBs alter synaptic plasticity at presynaptic nerve terminals; however, the characterization of the eCB system (ECS) in vivo remains incomplete. This study aimed to determine the mechanism of in vivo eCB-mediated hippocampal synaptic plasticity and to analyze the effects this plasticity had on spatial working memory (SWM). With in vivo recordings of field excitatory postsynaptic potentials (fEPSPs) in anesthetized mice and rats as well as pharmacological manipulation of the ECS and glutamate receptor antagonism, it was found that eCBs, both anandamide (AEA) and 2-arachnidonyl glycerol (2-AG), caused LTD at hippocampal CA3-CA1 synapses. Induction of eCB-LTD occurs via a sequential activation of cannabinoid type-1 receptor (CB1R) and NR2B-containing NMDA receptor (NR2BR) and is expressed through the endocytosis of AMPA receptors (AMPARs). Increased eCB tone also caused an impairment of SWM for over 24 hours in the Delayed Non-Match-To-Sample (DNMTS) T-maze. This study provides the first evidence that an acute administration of eCB degradative enzyme inhibitors not only produces an in vivo LTD at hippocampal CA3-CA1 synapses that requires CB1R, NR2BR, and AMPAR, but also impairs SWM, a phenomenon also caused by an acute injection of exogenous CBs.
17

Activation of Sigma-1 Receptors Increases Expression, Trafficking, and Surface Levels of NMDA Receptors

Pabba, Mohan 16 April 2014 (has links)
Sigma-1 receptors (σ-1Rs) are chaperone-like proteins that are broadly distributed throughout the central nervous system and in other tissues. They have been implicated in several physiological and pathological processes, primarily by their ability to modulate certain voltage- and ligand-gated ion channels. Growing evidence suggests that σ-1Rs regulate the functions of ion channels, such as voltage-gated K+ 1.2 (Kv 1.2) and the human Ether-à-go-go-Related Gene (hERG) ion channels, by modulating their expression, trafficking, and targeting. While it is well documented that σ-1Rs enhance the function of N-methyl-D-aspartate receptors (NMDARs), the mechanisms of this enhancement remain poorly understood. Using biochemical methods, we show that 90 minutes after intraperitoneal (i.p.) injection of σ-1R agonists such as (+)-SKF 10,047 (SKF) or (+)-Pentazocine (PTZ) (2 mg/kg), there is an increase in the expression of GluN2 subunits of NMDARs and postsynaptic density protein-95 (PSD-95) in the rat hippocampus. Following activation of σ-1Rs, co-immunoprecipitation (Co-IP) experiments reveal an increased interaction between σ-1Rs and NMDAR subunits; sucrose gradient centrifugation demonstrates an increase in the protein levels of GluN2 subunits in vesicular compartment; and biotinylation shows an increase in the surface levels of GluN2A-containing NMDARs. Taken together, our results suggest σ-1Rs may enhance NMDARs function by increasing their expression, trafficking, and surface levels. This σ-1R-mediated increase in NMDAR expression and surface levels might be involved in several physiological processes such as learning and memory. Our findings also suggest that σ-1Rs could form a potential target for designing novel antipsychotics.
18

Endocannabinoid Function in Hippocampal Synaptic Plasticity and Spatial Working Memory

Blaskovits, Farriss January 2013 (has links)
Cannabis has been used medicinally for millennia, but the cannabinoid (CB) field exploded with the identification of its endogenous receptors and endocannabinoids (eCBs). In vitro experimentation established that eCBs alter synaptic plasticity at presynaptic nerve terminals; however, the characterization of the eCB system (ECS) in vivo remains incomplete. This study aimed to determine the mechanism of in vivo eCB-mediated hippocampal synaptic plasticity and to analyze the effects this plasticity had on spatial working memory (SWM). With in vivo recordings of field excitatory postsynaptic potentials (fEPSPs) in anesthetized mice and rats as well as pharmacological manipulation of the ECS and glutamate receptor antagonism, it was found that eCBs, both anandamide (AEA) and 2-arachnidonyl glycerol (2-AG), caused LTD at hippocampal CA3-CA1 synapses. Induction of eCB-LTD occurs via a sequential activation of cannabinoid type-1 receptor (CB1R) and NR2B-containing NMDA receptor (NR2BR) and is expressed through the endocytosis of AMPA receptors (AMPARs). Increased eCB tone also caused an impairment of SWM for over 24 hours in the Delayed Non-Match-To-Sample (DNMTS) T-maze. This study provides the first evidence that an acute administration of eCB degradative enzyme inhibitors not only produces an in vivo LTD at hippocampal CA3-CA1 synapses that requires CB1R, NR2BR, and AMPAR, but also impairs SWM, a phenomenon also caused by an acute injection of exogenous CBs.
19

Activation of Sigma-1 Receptors Increases Expression, Trafficking, and Surface Levels of NMDA Receptors

Pabba, Mohan January 2014 (has links)
Sigma-1 receptors (σ-1Rs) are chaperone-like proteins that are broadly distributed throughout the central nervous system and in other tissues. They have been implicated in several physiological and pathological processes, primarily by their ability to modulate certain voltage- and ligand-gated ion channels. Growing evidence suggests that σ-1Rs regulate the functions of ion channels, such as voltage-gated K+ 1.2 (Kv 1.2) and the human Ether-à-go-go-Related Gene (hERG) ion channels, by modulating their expression, trafficking, and targeting. While it is well documented that σ-1Rs enhance the function of N-methyl-D-aspartate receptors (NMDARs), the mechanisms of this enhancement remain poorly understood. Using biochemical methods, we show that 90 minutes after intraperitoneal (i.p.) injection of σ-1R agonists such as (+)-SKF 10,047 (SKF) or (+)-Pentazocine (PTZ) (2 mg/kg), there is an increase in the expression of GluN2 subunits of NMDARs and postsynaptic density protein-95 (PSD-95) in the rat hippocampus. Following activation of σ-1Rs, co-immunoprecipitation (Co-IP) experiments reveal an increased interaction between σ-1Rs and NMDAR subunits; sucrose gradient centrifugation demonstrates an increase in the protein levels of GluN2 subunits in vesicular compartment; and biotinylation shows an increase in the surface levels of GluN2A-containing NMDARs. Taken together, our results suggest σ-1Rs may enhance NMDARs function by increasing their expression, trafficking, and surface levels. This σ-1R-mediated increase in NMDAR expression and surface levels might be involved in several physiological processes such as learning and memory. Our findings also suggest that σ-1Rs could form a potential target for designing novel antipsychotics.
20

Cellular Substrate of Eligibility Traces in Cortex

Caya-Bissonnette, Léa 04 December 2023 (has links)
Contemporary cellular models of learning and memory are articulated around the idea that synapses undergo activity-dependent weight changes. However, conventional forms of Hebbian plasticity do not adequately address certain features inherent to behavioral learning. First, associative learning driven by delayed behavioral outcomes introduces a temporal credit assignment problem, whereby one must remember which action corresponds to which outcome. Yet, current models of associative synaptic plasticity, such as spike-timing-dependent plasticity, require near coincident activation of pre- and postsynaptic neurons (i.e., within ~ 10 ms), a time delay that is orders of magnitude smaller than that required for behavioral associations. For individual neurons to associate two cues, a biological mechanism capable of potentiating synaptic weights must be able to bind events that are separated in time. Theoretical work has suggested that a synaptic eligibility trace, a time-limited process that momentarily renders synapses eligible for weight updates via delayed instructive signals, can solve this problem. However, no material substrate of eligibility traces has been identified in the brain. Second, under certain conditions, neurons need to swiftly update their weights to reflect rapid learning. Current plasticity experiments require the repetition of multiple pairings to induce long-term synaptic plasticity. In this thesis, I addressed these problems using a combination of whole-cell recordings, two-photon uncaging, calcium imaging, and mechanistic modeling. I uncovered a form of synaptic plasticity known as behavioral timescale synaptic plasticity (BTSP) in layer 5 pyramidal neurons in the prefrontal cortex of mice. BTSP induced synaptic potentiation by pairing temporally separated pre- and postsynaptic events (0.5 s - 1 s), regardless of their order. The temporal window for BTSP induction offers a line of solution to the temporal credit assignment problem by highlighting the presence of a synaptic mechanism that expands the time for the induction of activity-dependent long-term synaptic plasticity, spanning hundreds of milliseconds. We further found that BTSP can be induced following a single pairing, enabling rapid weight updates required for one-shot learning. Using two-photon calcium imaging in apical oblique dendrites, I discovered a novel short-term and associative plasticity of calcium dynamics (STAPCD) that exhibited temporal characteristics mirroring the induction rules of BTSP. I identified a core set of molecular components crucial for both STAPCD and BTSP and developed a computational simulation that models the calcium dynamics as a latent memory trace of neural activity (i.e., eligibility traces). Together, we find that calcium handling by the endoplasmic reticulum enables synaptic weight updates upon receipt of delayed instructive signals, obeys rules of burst-dependent one-shot learning, and thus provides a mechanism that satisfies the requirements anticipated of eligibility traces. Collectively, these findings offer a neural mechanism for the binding of cellular events occurring in single shot and separated by behaviorally relevant temporal delays to induce potentiation at synapses, providing a cellular model of associative learning.

Page generated in 0.0806 seconds