Spelling suggestions: "subject:"synaptic vesicles."" "subject:"ynaptic vesicles.""
1 |
Interactions of inhibitors with the catecholamine/serotonin transport system in synaptic vesiclesDetwiler, Shellene D. January 1986 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
|
2 |
Imaging fusion and retrieval of synaptic vesicles in retinal bipolar synapses of zebrafishPelassa, Ilaria January 2011 (has links)
No description available.
|
3 |
The localization and compartmentalization of VAMP 2 in human B lymphoblastsRiegle, Lisa M. 09 July 2011 (has links)
Access to abstract permanently restricted to Ball State community only / Access to thesis permanently restricted to Ball State community only / Department of Physiology and Health Science
|
4 |
The localization of VAMP 2 in rabbit B lymphoblasts / Title on signature form: Localization of VAMP-2 in rabbit B lymphocyteAlbrekkan, Fatimah M. 03 May 2014 (has links)
Vesicle associated membrane protein 2 (VAMP 2) is a synaptic vesicle protein
involved with exocytosis in many different cell types, such as pancreatic cells, parotid salivary
cells, adrenal cells, skeletal cells, and adipocytes. Also, white blood cells such as eosinophils,
neutrophils, and mast cells have been characterized to process VAMP 2. In this study, we tested
the hypothesis that VAMP 2 is associated with the vesicle population in rabbits B lymphocytes
and may serve as the v-SNARE for vesicular antibody release. Two Rabbit B lymphoblast cell
lines were used to detect the presence of VAMP 2, which are the 240 E IgG secreting
plasmacytoma-like cell line and 55D1 IgM surface expressing cells. The cell lines were broken
down into vesicle and plasma membrane fractions. Immune dot blots demonstrated VAMP 2 was
positive in the vesicle fraction of both cell lines. However, VAMP 2 was expressed more by the
240 E IgG secreting cell line. Western blots displayed diverse results with bands that ran at or
below 20 KDa, which is consistent with the known molecular weight bands for VAMP 2 of
12.6 kDa and 18 kDa. Our results suggested that VAMP 2 is associated with the vesicle
population in rabbit B lymphocytes and could serve as the v- SNARE for vesicular antibody
release. / Access to thesis permanently restricted to Ball State community. / Department of Physiology and Health Science
|
5 |
Identification of vesicle-associated membrane protein 7 (VAMP7) in rabbit B lymphocytes / Identification of vesicle associated membrane protein 7 (VAMP-7) in rabbit B lymphocytes / Title on signature form: Identification of vesicle-associated protein 7 (VAMP-7) in rabbit B lymphocytesFrench, Kyleigh Anne 03 May 2014 (has links)
VAMP-7 has been found to interact with SNAP-23, a t-SNARE that functions in relocating
granule membranes in response to stimulation, and plays a large role in the regulation of granule
release from mast cells in response to an allergic reaction. While evidence suggests that VAMP-7 is
active in antibody release in the innate immune system, little investigation has been completed on
VAMP-7 interaction in specific antibody release of B lymphocytes of the humoral immune system.
Little research has previously focused on vesicular transport within B lymphocytes, leaving
molecular mechanisms within B lymphocytes a mystery. Immunodot blots, western blots, and
immunoflourescent microscopy were all utilized with the goal of identifying the presence of VAMP-
7. Immunobot blots for both 55D1 and 240E cells were all negative for the presence of VAMP-7.
However, VAMP-7 was detected using immunoflourescent microscopy in both 55D1 and 240E cell
lines. / Access to thesis permanently restricted to Ball State community. / Department of Physiology and Health Science
|
6 |
Biochemical and functional characterization of the interaction between the synaptic vesicle proteins SV2 and synaptotagmin /Schivell, Amanda Elizabeth. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 122-130).
|
7 |
The efficiency of neurotransmitter vesicle recycling : a tale of molecules and cell types /Mani, Meera. January 2008 (has links)
Thesis (Ph. D.)--Cornell University, May, 2008. / Vita. Includes bibliographical references.
|
8 |
Synaptic Vesicles, Mitochondria, and Actin Alterations in SMN-deficient MiceNeher, Margret Feodora Maria 27 May 2015 (has links)
Proximale Spinale Muskel Atrophie (SMA) ist eine autosomal rezessive Krankheit, charakterisiert durch eine Degeneration des zweiten Motorneurons und einer progressiven Paralyse und Atrophie proximaler Muskeln. Nach Zystischer Fibrose, ist SMA die häufigste autosomal rezessive Erkrankung bei Menschen und der häufigste genetische Grund für Säuglingssterblichkeit. SMA, monogenetisch im Ursprung, ist verursacht durch eine Mutation in einem einzelnen Gen, dem Survival Motor Neuron 1 (SMN1) Gen, was zu einer reduzierten Menge an Survival Motor Neuron (SMN) protein führt. SMN ist ein ubiquitär expremiertes Protein mit house-keeping Funktion in snRNP Biogenese und pre-mRNA splicen. Dennoch, eine reduzierte Menge an SMN beeinträchtigt vor allem Motor Neurone und Muskeln aus bisher unverständlichen Gründen. Es wurde demonstriert, dass SMN mit ß-actin mRNA interagiert und an dessen Transport entlang des Axons beteiligt ist. Funktionelle Studien an der Neuromuskulären Synapse (NMJ) haben gezeigt, dass Evozierte Neurotransmitterfreisetzung um 55 % reduziert war in den meist betroffenen Muskelgruppen, dies indiziert, dass eine verringerte Menge an Vesikeln fusioniert, währenddessen asynchrone Transmitterfreisetzung um 300 % erhöht ist aufgrund von einer abnormalen Akkumulation von Calcium in der Nervenendigung in SMA Mäusen. Eine Mögliche Erklärung für diese Calcium Erhöhung ist eine herabgesetzte Calcium Aufnahme durch Mitochondrien während Serien von Aktions Potenzialen. Diese Studie präsentiert eine umfassende Analyse mit einem Fluoreszens Konfokal Mikroskop über die Organisation und Fülle Synaptischer Vesikel (SVs), Mitochonrien und Aktin in Nervenendigungen von SMA Mäusen ( Smn -/-; SMN2; SMNdelta7). Wir visualisierten Synaptische Vesikel mit einem Antikörper gegen den Acetylcholin ( VACht) und konnten zeigen, dass im Transversus Abdominis (TVA) Muskel SV Klusters während des Reifungsprozesse klein verbleiben mit einer Reduzierung von 50% der totalen Fläche die von SVs bedeckt ist. Diese schwere Reduktion von SVs wurde auch im der kaudalen Muskelstrang des Levator auris longus (LAL) Muskel gefunden, obwohl nur leichte Veränderungen in der Postsynapse dieses Muskels festzustellen sind. Diese Ergebniss von Präsynaptischer Pathologie, neben fast normalen postsynaptischen Status, verstärkt die Hypothese dass SMN-induzierte Veränderungen im Muskel nicht auschließlich eine reine Konsequenz von Motor Neuron Degeneration sein können. Als Nächstes, haben wir Mitochondria mit Mitotracker angefärbt und haben gefunden, dass die Fläche,die von Mitochondrien in Mutanten Mäusen bedeckt ist, etwa nur die Hälfte der Fläche im Wild typ beträgt. Überraschenderweise waren SVs und Mitochondrien stak kolokalisiert. In vielen Fällen war ein Kern von Mitochondrien deutlich umgeben von einem Ring aus SVs. Diese Verteilung war unbeeinträchtig in der Mutanten Maus und könnte eine mehr generelle Bedeutung in Nervenendigungen haben. Phalloidin gefärbtes Aktin zeigte das F-aktin ringförmige Strukturen um SV Klusters formt. Diese Strukturen und der Prozentuale Anteil der Nervenendigung der von Aktin bedeckt ist, war geringer in SMA Mutanten Mäusen. Aktin ist an multiblen Schritten des Vesikel Zyklus beteiligt. Kurz Strecken-Transport von Vesikeln und Organellen, wie Mitochondrien in Wachstunskegeln und Nervendigungen ist vor allem vom aktin-myosin-basierten Transport abhängig. Weitere Arbeit ist notwendig um zu klären ob die Charakteristiken des SMA Phänotyps wie abnormales SV Klustering, Reduktion von Mitochondrien, unabhängig auftreten oder eine gemeinsame Konsequenz von einer Dysfunktion des Aktin Zytoskeleton sind, was Aktin eine Schlüsselrolle in der SMA Pathogenese verleihen würde.
|
9 |
Molecular Mechanisms of Synaptic Vesicle DegradationSheehan, Patricia Jane January 2016 (has links)
Neurons rely on precise spatial and temporal control of neurotransmitter release to ensure proper communication. Neurotransmission occurs when synaptic vesicles in the presynaptic compartment fuse with the plasma membrane and release their contents into the synaptic cleft, where neurotransmitters bind to receptors on the postsynaptic neuron. Synaptic vesicle pools must maintain a functional repertoire of proteins in order to efficiently release neurotransmitter. Indeed, the accumulation of old or damaged proteins on synaptic vesicle membranes is linked to synaptic dysfunction and neurodegeneration. Despite the importance of synaptic vesicle protein turnover for neuronal health, the molecular mechanisms underlying this process are unknown. In this thesis, we present work that uncovers key components that regulate synaptic vesicle degradation. Specifically, we identify a pathway that mediates the activity-dependent turnover of a subset of synaptic vesicle membrane proteins in mammalian neurons. This pathway requires the synaptic vesicle-associated GTPase Rab35, the ESCRT machinery, and synaptic vesicle protein ubiquitination. We further demonstrate that neuronal activity stimulates synaptic vesicle protein turnover by inducing Rab35 activation and binding to the ESCRT-0 component Hrs, which we have identified as a novel Rab35 effector. These actions recruit the downstream ESCRT machinery to synaptic vesicle pools, thereby initiating synaptic vesicle protein degradation via the ESCRT pathway. Interestingly, we find that not all synaptic vesicle proteins are degraded by this mechanism, suggesting that synaptic vesicles are not degraded as units, but rather that SV proteins are degraded individually or in subsets. Moreover, we find that lysine-63 ubiquitination of VAMP2 is required for its degradation, and we identify an E3 ubiquitin ligase, RNF167, that is responsible for this activity. Our findings show that RNF167 and the Rab35/ESCRT pathway facilitate the removal of specific proteins from synaptic vesicle pools, thereby maintaining presynaptic protein homeostasis. Overall, our studies provide novel mechanistic insight into the coupling of neuronal activity with synaptic vesicle protein degradation, and implicate ubiquitination as a major regulator in maintaining functional synaptic vesicle pools. These findings will facilitate future studies determining the effects of perturbations to synaptic homeostasis in neuronal dysfunction and degeneration.
|
10 |
Elimination of zinc from synaptic visicles in the intact mouse brain by targeted disruption of ZnT3 /Cole, Toby B. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 60-67).
|
Page generated in 0.0877 seconds