• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 307
  • 135
  • 44
  • 19
  • 18
  • 15
  • 7
  • 2
  • 1
  • Tagged with
  • 619
  • 247
  • 247
  • 201
  • 126
  • 108
  • 103
  • 97
  • 56
  • 54
  • 51
  • 47
  • 46
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Synchrotron studies of "self-compression" in urea inclusion compounds

Wang, Bo January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Mark D. Hollingsworth / Urea inclusion compounds (UICs) are classic examples of nanoporous, host:guest materials in which the linear channels of the honeycomb structure of the urea host can include various types of long-chain compounds (the guests). By using synchrotron X-ray radiation sources, a deeper understanding of these materials is made possible through detailed structural studies. In particular, this dissertation describes a series of structural phase transitions that occur upon cooling two related UICs containing alkanedione guest molecules. UICs may be classified as either commensurate or incommensurate structures, depending on whether the repeat lengths of the host (c[subscript h]) and guest (c[subscript g]) along the channel axis are related by a small whole number ratio. Crystals of 2,8-nonanedione/urea and 2,11-dodecanedione/urea, which are incommensurate structures at room temperature, undergo "lock-in" phase transitions below room temperature to generate commensurate structures in which the guest repeat lengths are elongated. Upon nucleation and growth of these elongated, commensurate phases, other molecules in the same channels are compressed to give successively shorter guest repeat lengths. Further lock-in phase transitions give a multitude of commensurate and incommensurate phases during cooling. The crystal structures of two of these commensurate phases have been determined using synchrotron sources. The "self-compression" observed in these 1-D crystals serves as a paradigm for understanding solid-state reactions in three-dimensional crystals.
112

Diffuse radio foregrounds : all-sky polarisation and anomalous microwave emission

Vidal Navarro, Matias Ambrosio January 2014 (has links)
In this Thesis, we present work on the diffuse Galactic emission in the 23−43 GHz frequency range. We studied the polarised emission, which is dominated by synchrotron radiation at these frequencies. We also present work on the anomalous microwave emission (AME), both in total intensity and polarisation. These observations are useful to quantify the CMB foreground contribution and give us information about the ISM of our Galaxy. Polarisation observations are affected by a positive bias, particularly important in regions with low signal-to-noise ratio. We present a method to correct the bias in the case where the uncertainties in the Q, U Stokes parameters are not symmetric. We show that this method successfully corrects the polarisation maps, with a residual bias smaller than the random uncertainties on the maps, outperforming the methods that are previously described in the literature. We use the de-biasing method to set upper limits for the polarisation of AME in the ρ Ophiuchi and Perseus molecular clouds. In both clouds the AME polarisation fraction is found to be less than 2% at 23 GHz and33 GHz. We use data from the WMAP satellite at 23, 33 and 41 GHz to study the diffuse polarised emission over the entire sky. This emission is due to synchrotron radiation and it originates mostly from filamentary structures with well-ordered magnetic fields. We identify new filaments and studied their observational properties, such as polarisation spectral indices, polarisation fraction and Faraday rotation. We explore the link between the large scale filaments and the local ISM, using the model of an expanding shell in the vicinity of the Sun. We also quantify the level of contamination added by the diffuse filaments to the CMB E- and B-mode power spectra. The Q/U Imaging ExperimenT (QUIET) observed the polarised sky at 43 and 95 GHz, in order to measure the CMB spectra. We describe the instrument, the observations and data processing, focusing on two regions of the Galactic plane. We study the foreground contamination in a region of the sky. We also discuss some properties of the diffuse synchrotron emission observed on the Galactic plane by QUIET. Using interferometric observations at 31 GHz, we studied AME in the translucent cloud LDN 1780. Interferometric data at 31 GHz and different ancillary data were used. We study the connection between the radio emission and the interstellar dust present in the cloud. The spinning dust hypothesis for the origin of AME is tested and we conclude that it can explain the radio properties observed in this cloud.
113

Project-Group ESRF-Beamline (ROBL-CRG), Bi-Annual Report 1999/2000

Matz, W. January 2001 (has links)
The second report from the Project-Group ESRF-Beamline of the Forschungszentrum Rossendorf covers the period from July 1999 until December 2000. The ROssendorf BeamLine (ROBL) at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France performed quite well during this time. In the beamtime used by the FZR and collaborating institutes 44 scheduled experiments were performed, while in the ESRF scheduled beamtime 12 experiments. Additionally, a distinct amount of beamtime was devoted to in-house research of the FZR and methodical experiments. Since February 2000 ROBL is part of the European Commission's programme "Access to Research Infrastructure" which supports user groups from member and associated states of the EU during experiments at ROBL. In the year 2000 ROBL hosted 6 groups for experiments. The report is organised in three main parts. The first part contains extended contributions on results obtained at ROBL. The second part gives an overview about the scheduled experiments, publications, guests having visited ROBL with support of the EC, and some other information. Finally, the third part collects the experimental reports of the user groups received.
114

Bi-Annual Report 2007/08 - Rossendorf Beamline at ESRF (ROBL-CRG)

Scheinost, A. January 2009 (has links)
The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 6th report covers the period from January 2007 to December 2008. In these two years, 50 peerreviewed papers have been published based on experiments done at the beamline. The average citation index, which increased constantly over the years, has now reached 3.5 (RCH) and 3.0 (MRH), indicating that papers are predominately published in journals with high impact factors. Six exemplary highlight reports on the following pages should demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). Demand for beamtime remains very high as in the previous years, with an average oversubscription rate of 1.8 for ESRF experiments. The attractiveness of our beamline is based upon the high specialization of its two end-stations. RCH is one of only two stations in Europe dedicated to x-ray absorption spectroscopy of actinides and other radionuclides. The INE beamline at ANKA provides superior experimental flexibility and extends to lower energies, including important elements like P and S. In contrast, ROBL-RCH provides a much higher photon flux, hence lower detection limits crucial for environmental samples, and a higher energy range extending to elements like Sb and I. Therefore, both beamlines are highly complementary, covering different aspects of radiochemistry research. Once the MARS beamline at SOLEIL is ready to run radionuclides (>2010), it will cover a third niche (Materials Science of actinides, including irradiated fuel) not accessible for the two other beamlines. The Materials Research Hutch MRH has realized an increasing number of in-situ investigations in the last years. On the one hand thin film systems were characterized during magnetron sputtering. On the other hand diffraction experiments under controlled atmosphere were performed. A high variety of experimental parameters was covered by varying pressure, temperature and atmospheric compositions including highly reactive gases. Furthermore structural investigations were combined with electrical conductivity measurements. These kind of in-situ experiments are the key to monitor and understand reaction mechanism or the influence of process parameters, which are again the basis to tailor materials properties on demand. The core competences of MRH are these experimental possibilities, which make it unique among other diffraction beamlines. In fall 2007, ROBL was reviewed by an international panel on behalf of the ESRF. The very positive panel report recommended a renewal of the contract between ESRF and FZD for the next five years, and a major upgrade of critical optical components of the beamline to keep ROBL competitive for the next decade. The FZD will provide 2 Mio € from 2009 to 2011 for this upgrade, which will be performed in parallel to the major upgrade of the ESRF to minimize the downtime. According to the current plans of the ESRF, our users have to expect that ROBL will have only limited or no operation for several months from August 2011 on. Since July 2004 the beamline is a member of the pooled facilities of ACTINET – European Network of Excellence. In the reported period, RCH has provided 27 % of its inhouse beamtime to perform 11 ACTINET experiments. The success of ACTINET within FP-6 has now led to a renewal of ACTINET within FP-7, running until end of 2011.
115

Investigating Cathode–Electrolyte Interfacial Degradation Mechanism to Enhance the Performance of Rechargeable Aqueous Batteries

Zhang, Yuxin 04 December 2023 (has links)
The invention of Li-ion batteries (LIBs) marks a new era of energy storage and allows for the large-scale industrialization of electric vehicles. However, the flammable organic electrolyte in LIBs raises significant safety concerns and has resulted in numerous fires and explosion accidents. In the pursuit of more reliable and stable battery solutions, interests in aqueous batteries composed of high-energy cathodes and water-based electrolytes are surging. Limited by the narrow electrochemical stability window (ESW) of water, conventional aqueous batteries only achieve inferior energy densities. Current development mainly focuses on manipulating the properties of aqueous electrolytes through introducing excessive salts or secondary solvents, which enables an unprecedentedly broad ESW and more selections of electrode materials while also resulting in some compromises. On the other hand, the interaction between electrodes and aqueous electrolytes and associated electrode failure mechanism, as the key factors that govern cell performance, are of vital importance yet not fully understood. Owing to the high-temperature calcination synthesis, most electrode materials are intrinsically moisture-free and sensitive to the water-rich environment. Therefore, compared to the degradation behaviors in conventional LIBs, such as cracking and structure collapse, the electrode may suffer more severe damage during cycling and lead to rapid capacity decay. Herein, we adopted multi-scale characterization techniques to identify the failure modes at cathode–electrolyte interface and provide strategies for improving the cell capacity and life during prolonged cycling. In Chapter 1, we first provide a background introduction of conventional non-aqueous and aqueous batteries. We then show the current development of modern aqueous batteries through electrolyte modification and their merits and drawbacks. Finally, we present typical electrode failure mechanism in non-aqueous electrolytes and discuss how water can further impact the degradation behaviors. In Chapter 2, we prepare three types of aqueous electrolytes and systematically evaluate the electrochemical performance of LiNixMnyCo1-x-yO2, LiMn2O4 and LiFePO4 in the aqueous electrolytes. Combing surface- and bulk-sensitive techniques, we identify the roles played by surface exfoliation, structure degradation, transition metal dissolution and interface formation in terms of the capacity decay in different cathode materials. We also provide fundamental insights into the materials selection and electrolyte design in the aqueous batteries. In Chapter 3, we select LiMn2O4 as the material platform to study the transition metal dissolution behavior. Relying on the spatially resolved X-ray fluorescence microscopy, we discover a voltage-dependent Mn dissolution/redeposition (D/R) process during electrochemical cycling, which is confirmed to be related to the Jahn–Teller distortion and surface reconstruction at different voltages. Inspired by the findings, we propose an approach to stabilize the material performance through coating sulfonated tetrafluoroethylene (i.e., Nafion) on the particle, which can regulate the proton diffusion and Mn dissolution behavior. Our study discovers the dynamic Mn D/R process and highlights the impact of coating strategy in the performance of aqueous batteries. In Chapter 4, we investigate the diffusion layer formed by transition metals at the electrode–electrolyte interface. With the help of customized cells and XFM technique, we successfully track the spatiotemporal evolution of the diffusion layer during soaking and electrochemical cycling. The thickness of diffusion layer is determined to be at micron level, which can be readily diminished when gas is generated on the electrode surface. Our approach can be further expanded to study the phase transformation and particle agglomeration at the interfacial region and provide insights into the reactive complexes. In Chapter 5, we reveal the correlation between the electrolytic water decomposition and ion intercalation behaviors in aqueous batteries. In the Na-deficient system, we discover that overcharging in the formation process can introduce more cyclable Na ions into the full cell and allows for a boosted performance from 58 mAh/g to 124 mAh/g. The mechanism can be attributed to the water oxidation on the cathode and Na-ion intercalation on the anode when the charging voltage exceeds the normal oxidation potential of cathode. We emphasize the importance of unique formation process in terms of the cell performance and cycle life of aqueous batteries. In Chapter 6, we summarize the results of our work and propose perspectives of future research directions. / Doctor of Philosophy / Li-ion batteries (LIBs) have dominated the market for portable devices and electric vehicles owing to their high energy density and good cycle life. However, frequent battery explosion accidents have raised significant safety concerns for all customers. The root cause can be attributed to the flammable organic electrolytes in conventional LIBs. To address this issue, aqueous batteries based on water-rich electrolytes attract intensive attention recently. Recent research progress has dramatically improved the energy density of aqueous batteries dramatically by modifying the properties of electrolytes. However, most electrode materials are incompatible with water, leading to severe side reactions and an unstable cycle life. Therefore, understanding the failure mechanism of electrode materials in the presence of water is crucial while not fully studied yet. Our projects systematically evaluate the degradation behavior of various electrodes in aqueous electrolytes and uncover the root cause of transition metal dissolution in the electrodes. Our studies shed light on improving battery capacity and cycle life through a specialized formation cycle and polymer coating process. Furthermore, we also provide new approaches to investigate the dynamic process occurring at electrode–electrolyte interface, which is applicable to other solid–liquid systems. In summary, our research reveals the correlation between the failure mechanism and the capacity decay in various electrode materials, proposing effective approaches to enhance the battery performance.
116

Applications of synchrotron radiation and optical spectroscopic techniques to the study of electrochemical interfaces

Kim, Sunghyun January 1993 (has links)
No description available.
117

Measurement Of Residual Stresses in Diesel Components using X-ray, Synchrotron, and Neutron Diffraction

England, Roger D. January 2000 (has links)
No description available.
118

Investigation of Microbunching Instabilities in Modern Recirculating Accelerators

Tsai, Cheng-Ying 20 April 2017 (has links)
Particle accelerators are machines to accelerate and store charged particle beams, such as electrons or protons, to the energy levels for various scientific applications. There are three basic types of particle accelerators: linear accelerators (linac), storage-ring (or circular) accelerators, and recirculating accelerators. The third type, also the most recent one, is designed to accelerate a particle beam in a short section of linac, circulate and then continue to accelerate it for energy boost or decelerate it for energy recovery. The modern recirculating machines possess the advantages to both accelerate and preserve the beam with high beam quality, as well as efficiently reuse the accelerating components. As modern accelerators push toward the high-brightness or high-intensity frontier by demanding particles in a highly charged bunch to concentrate in an ever-decreasing beam phase space, the interaction amongst particles via their self-generated electromagnetic fields can potentially lead to coherent instabilities of the beam and thus pose significant challenges to the machine design and operation. Microbunching instability (MBI) has been one of the most challenging issues for such high-brightness or high-intensity beam transport, as it would degrade lasing performance in the fourth-generation light sources, reduce cooling efficiency in electron cooling facilities, and eventually compromise the luminosity of colliding beams in lepton or lepton-hadron colliders. The dissertation work will focus on the MBI in modern recirculating electron accelerators. The research attempts to develop a comprehensive theoretical formulation of MBI with aspects including among various degrees of freedoms the beam itself, the beamline lattice optics, and incorporation of all relevant collective effects that the beam encounters, for example the coherent synchrotron radiation (CSR) and the longitudinal space charge (LSC) effects. This dissertation includes the following seven themes: 1) Development and generalization of MBI theory to arbitrary linear lattices and coupled beams with constant and varying energies; 2) Construction of CSR impedance models from steady state to transient state and from high to low energy regime; 3) Numerical implementation of the developed theory as a fast and numerical-noise-free Vlasov solver and benchmarking with massive particle tracking simulation; 4) Exploration of multistage cascaded amplification mechanism of CSR microbunching development; 5) Control of CSR-induced MBI in multi-bend transport or recirculation arcs; 6) Study of more aspects of microbunched structures in beam phase spaces; and 7) Study of MBI for magnetized beams and confirming the suppression of MBI for a recent cooler design for Jefferson Lab Electron Ion Collider project. / Ph. D.
119

Measurement of the low-x behaviour of the photon structure function Fâ??2'#gamma#

Clay, Edmund Wilson January 2000 (has links)
No description available.
120

Sillicon photonics based on monolithic integration of III-V nanostructures on silicon / Photonique sur silicium à base de nanostructures III-V épitaxiées sur silicium

Nguyen, Thanh Tra 17 September 2013 (has links)
Cette thèse porte sur l’optimisation de la croissance hétérogène de nanostructures III-V sur substrat de Si(001) désorienté selon [110]. Le but principal concerne la réalisation de sources optiques efficaces sur substrat de Si pour les interconnexions optiques à très haut débit inter et intra puces, dans le cadre du développement de circuits optoélectroniques intégrés (OEIC –optoelectronic integrated circuit). Dans un premier temps, cette étude porte sur l’optimisation de l’incorporation d’azote dans GaPN sur substrat de GaP (001), de façon à obtenir l’accord de paramètre de maille avec le Si. Cette étude est intéressante pour la croissance des composés III-V à azote dilué, tels que GaAsPN, qui sont très attractifs pour des applications lasers à grande longueur d’onde et des applications photovoltaïques à haut rendement, sur substrats de Si. Nous avons ensuite étudié la croissance d’une couche active à base de boîtes quantiques (In,Ga)As sur substrat de GaP(001). Ces boîtes présentent une haute densité et une bonne uniformité en taille. La photoluminescence à température ambiante est également obtenue sur ces boîtes quantiques, ce qui est très encourageant pour la réalisation de sources optoélectroniques intégrées sur substrat de silicium. Dans latroisième partie, nous avons étudié la croissance homoépitaxiale de Si par UHV/CVD nécessaire pour enterrerdes contaminants résiduels à la surface, et obtenir une surface propice à l’hétéroépitaxie de GaP de qualité structuraleoptimale. L’étude de croissance inclue la formation de doubles marches atomiques, favorisée par la désorientation du substrat, permettant de limiter l’apparition de défauts structuraux. Finalement, l’interface GaP/Si est optimisée, tout en obtenant une surface de GaP plane et une densité de défauts minimale. Une méthodologie pour quantifier les défauts structuraux (domaines d’antiphase, micro-macles) par diffraction des rayons X au Synchrotron et en laboratoire est présentée. Cette étude révèle une anisotropie d’orientation des micro-macles, liée à la direction de désorientation du substrat de Si, et une forte réduction de la densité de macles à haute température de croissance. La croissance de GaP sur substrat de Si, en couche mince d’épaisseur inférieure à l’épaisseur critique est obtenue spécifiquement avec un cluster de croissance composé d’un bâti Si UHV/CVD connecté sous ultra-vide avec un bâti III-V MBE. Les résultats montrent une réduction importante des défauts structuraux ce qui permet d’obtenir un pseudo-substrat GaP/Si présentant une surface plane, appropriée pour la croissance ultérieure de sources optiques efficaces. Les résultats obtenus permettent d’envisager la réalisation de sources lasers à base de composés III-V sur substrat de silicium. / This thesis focuses on the heterogeneous growth optimization of III-V nanostructures on Si (001) substrate displaying a miscut toward [110]. The main purpose concerns the integration of efficient light sources on Si substrate for high-speed optical interconnects inter-and intra-chip, as a cornerstone for the development of optoelectronic integrated circuits (OEIC).First, this study focuses on the optimisation of nitrogen incorporation in GaPN on GaP(001) substrate, while reachingthe lattice-matching condition with Si. This study is also interesting for the growth of any GaPN-based dilute nitridecompounds, such as GaAsPN, which are very attractive for long wavelength laser applications and high-efficiency photovoltaic applications on Si substrates. In a second step, we studied the growth of an active layer based on (In,Ga)As quantum dots (QD) on GaP (001) substrate. These QD display a high density and good uniformity in size. Room temperature photoluminescence is also obtained on these QD, which is very promising for the fabrication of integrated optoelectronic sources on a silicon substrate. In the third part, this study focuses on the homoepitaxial growth of Si by UHV/CVD necessary to bury residual contaminants initially present on the Si surface, and to obtain a Si surface suitable for the subsequent heteroepitaxial growth of optimal structural quality GaP layer. This includes the formation of double atomic steps, by step bunching and favors by the substrate miscut, in order to limit the structural defects. Finally, the GaP/Si interface is optimized, while obtaining a flat GaP surface and a minimum defects density. A methodology to quantify the structural defects (anti-phase domains, micro-twins) by X-ray diffraction using Synchrotron and laboratory sources is presented. This study reveals an anisotropic behavior of the micro-twins, linked to the miscut direction of the Si substrate, and a dramatic reduction of the micro-twins density at high growth temperature. The growth of thin GaP layers on Si substrates, with thickness less than the critical one and obtained with a purposely dedicated growth cluster composed of a Si UHV/CVD chamber connected under UHV with a III-V MBE chamber, shows a significant reduction of the structural defects and provides a GaP/Si pseudo-substrate with a flat surface suitable for subsequent growth of efficient light sources.

Page generated in 0.0287 seconds