• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L’effet des crises épileptiques sur les fonctions cognitives et comportementales des modèles murins portant la mutation du gène Scn1a : implication dans le Syndrome de Dravet / Effect of seizures on the cognitive and behavioral phenotypes of mouse models carrying the Scn1a gene mutation : implications for Dravet Syndrome

Salgueiro Pereira, Ana Rita 07 April 2017 (has links)
Les mutations du gène SCN1A, sont impliquées dans des épilepsies du nourrisson : le Syndrome de Dravet (SD), une épilepsie rare et pharmaco-résistante ou l’Epilepsie généralisée avec crises fébriles plus (GEFS+), une épilepsie plus légère. GEFS+ et SD sont associés à des crises épileptiques fébriles dès l’âge de 6 mois. Dans le SD on voit apparaitre des retards mentaux mais également des déficits moteurs, visuels, langagiers et mnésiques au cours de l’évolution de la maladie. L’impact des crises épileptiques au cours l’enfance sur ces déficits cognitifs n’est pas connu. Le SD est considéré comme une encéphalopathie épileptique où les crises étaient les principales responsables du phénotype à l’âge adulte. Récemment, un rôle potentiel de la mutation dans les troubles cognitifs a été mis en évidence changeant la définition de SD d’encéphalopathie épileptique à une canalopathie. La question est quel est le rôle des crises épileptiques répétées sur les fonctions cognitives à l’âge adulte ? Nous avons utilisé un modèle murin de la maladie portant une mutation du gène Scn1a, et qui présente une pathologie très légère. Nous avons induit des crises épileptiques par hyperthermie à l’âge de 21 jours (10 jours) et testé les effets à long-terme à l’âge adulte. Nos résultats révèlent que l’induction de crises induit une hyperactivité, des altérations dans les interactions sociales et des déficits en mémoires hippocampo et cortex préfronto-dépendantes. Ainsi nous avons mis en évidence que les crises épileptiques répétées pendant le développement ont un fort impact sur la fonction cérébrale et qu’il est donc capital de les prévenir afin de diminuer, voir de prévenir, ces déficits. / The SCN1A gene codes for the voltage-gated sodium channel Nav1.1 α-subunit. SCN1A mutations cause genetic epilepsies, as Generalized Epilepsy with Febrile Seizures plus (GEFS+), a mild epilepsy, or Dravet Syndrome (DS), a rare, severe and drug-resistant epileptic encephalopathy (EE). DS patients show severe cognitive/behavioral impairments that, according to the definition of EE, should be caused by the recurrent epileptic activity. Yet, this causal relationship has never been proved and it is been challenged by studies in mouse models showing that the genetic mutation itself, which causes a decrease in GABAergic activity, can be responsible for DS cognitive outcome. We studied the implication of repeated seizures during childhood to the later long-term modifications on cognitive/behavioral and epileptic phenotypes by submitting the Scn1a mouse model carrying the R1648H missense mutation and presenting mild phenotype to a protocol of repeated seizures induction by hyperthermia (10 days/one seizure per day). We observed that early life seizures can worsen the epileptic phenotype and induce cognitive/behavioral defects notably by inducing hyperactivity, sociability deficits and hippocampus- and prefrontal cortex-dependent memory deficits. We found that early life seizures can worsen the epileptic phenotype and induce cognitive/behavioral defects. Although the effect of NaV1.1 dysfunction in altering brain synchrony and the effect of repeated seizure activity in the young brain are not mutually exclusive, we thus conclude that epileptic seizures are sufficient to convert a Scn1a mouse model carrying a mild phenotype into a severe phenotype.
2

Study of the antiepileptic drugs transport through the immature blood-brain barrier / Etude du passage des médicaments antiépileptiques à travers la barrière hémato-encéphalique

Viana Soares, Ricardo 08 October 2015 (has links)
La résistance aux médicaments antiépileptiques (MAEs) est un des problèmes majeurs des épilepsies infantiles, comme par exemple le syndrome de Dravet. La pharmacoresistance de l’épilepsie pourrait s’expliquer par une diminution du passage des MAEs dans le cerveau, à travers la Barrière Hémato-Encéphalique (BHE). La BHE comporte des transporteurs des familles « ATP-binding cassette » (ABC) et « SoLute Carrier » (SLC) localisés au niveau de la membrane des cellules endothéliales qui contrôlent leur passage entre le sang et le cerveau. La pharmacoresistance des épilepsies a été associée à ces transporteurs car des MAEs ont été identifiés comme substrats de transporteurs comme la glycoprotéine-P (P-gP) et la « Breast Cancer Resistance Protein » (BCRP). L’hypothèse de cette relation est confortée par l’observation de l’augmentation de l’expression de ces transporteurs d’efflux dans le foyer épileptogène et par l’identification des polymorphismes dans les gènes des transporteurs chez des patients pharmacorésistants. L’interaction au cours du développement cérébral entre les cellules endothéliales et les neurones et astrocytes pourrait modifier le profil des transporteurs de la BHE. Les MAEs sont aussi connus pour être soit des inducteurs, soit des inhibiteurs des enzymes du métabolisme des médicaments et des transporteurs membranaires. Ces données nous permettent de faire les hypothèses suivantes: 1) La BHE en développement présente un profil de transporteurs différent de la BHE mature qui pourrait modifier le passage des MAEs vers le cerveau ; et 2) le traitement chronique administré au cours du syndrome de Dravet pourrait changer le phénotype des transporteurs de la BHE en développement. Nous résultats ont montré que la P-gP et la BCRP augment leur expression au cours du développement. La maturation de la BHE a aussi un impact sur le passage des MAEs étudiés. Nous avons constaté une augmentation de l’expression des différents transporteurs ABC et SLC étudiés pendant le développement de la BHE, suite au traitement chronique avec la thérapie du Syndrome de Dravet. L’acide valproïque, un des MAEs utilisé dans ce traitement, diminue l’activité d’efflux de la P-gP chez les rats en développement et adultes, ce qui a été confirmé dans un modèle in-vitro de BHE immature. Ces résultats mettent en évidence l’interaction entre la BHE en développement et le traitement chronique par les MAEs peut modifier leur distribution au niveau du cerveau et la réponse aux MAEs. / Resistance to Antiepileptic Drugs (AEDs) has been a major concern in infantile epilepsies such as for example the Dravet Syndrome. One hypothesis concerning the pharmacoresistance in epilepsy is that a decreased delivery of these drugs to the brain may occur in relation to changes in the Blood-Brain Barrier (BBB) function. BBB exhibits ATP-binding cassette (ABC) and SoLute Carrier (SLC) transporters at the surface of endothelial cells that control the blood-brain transport. Pharmacoresistance in epilepsy may be linked to changes in the functions of these transporters since some AEDs are substrates of the P-glycoprotein (P-gP) and Breast Cancer Resistance Protein (BCRP) transporters. The increased expression of efflux transporters in epileptogenic tissue and the identification of polymorphisms in the efflux transporters genes of resistant patients further support this potential relationship. The interaction of endothelial cells with astrocytes and neurons during brain development could change the pattern of transporters in the BBB. AEDs are also known as either inducers or inhibitors of drug metabolic enzymes and membrane transporters. Taken together, these facts led us to test the following hypothesis: 1) the developing BBB in immature animals presents a different pattern of transporters that could change AEDs disposition in the brain of immature subjects; and 2) the chronic pharmacotherapy used in infantile epilepsies such as the Dravet Syndrome may change the transporters phenotype of the BBB. Our work showed that the expression of P-gP and BCRP increases during development as a function of age. We also showed the maturation of the BBB has an impact on brain disposition of the studied AEDs. We finally observed an increase in the expression of various ABC and SLC transporters induced by the pharmacotherapy of the Dravet Syndrome in immature animals. One of the drugs used, valproic acid, appeared nonetheless to reduce the efflux activity of P-gP in developing and adult animals, which was confirmed in an in-vitro model of the immature BBB. Taken together, these results demonstrated that the interaction between the developing BBB and the AEDs chronic treatment may lead to differences in brain disposition of the AEDs that may impact on the response to AEDs.

Page generated in 0.0594 seconds