Spelling suggestions: "subject:"dyndrome dde weigh"" "subject:"dyndrome dde leigh""
1 |
Étude de la voie biologique du facteur induit par l'hypoxie (Hypoxia-inducible factor (HIF) 1) dans le contexte du syndrome de Leigh type canadien-françaisTardif, Jessica 20 April 2018 (has links)
La voie de l’hypoxie cellulaire, contrôlée par le facteur induit par l’hypoxie, est un processus permettant aux cellules de s’adapter à un changement des niveaux d’oxygène ambiant de leurs milieux en stimulant des gènes de la glycolyse qui permettent d’adapter la production d’ATP essentielle à la survie cellulaire. Celle-ci permet de conserver une respiration cellulaire efficace ainsi que de réduire la quantité de substances néfastes pour la cellule. Cette voie a été étudiée dans le contexte du syndrome de Leigh type Canadien-Français, maladie rare causée par une mutation du gène leucine-rich pentatricopeptide repeat containing (LRPPRC) qui entraîne une diminution de l’activité de l’enzyme cytochrome c oxydase et cause un déficit dans la production d’énergie. Bien que l’implication de cette voie ait été rejetée dans le contexte de cette maladie au niveau génétique, cette étude a permis d’identifier l’enzyme NADH déshydrogénase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2), qui est responsable de l’inhibition du complexe I en situation d’hypoxie. Cette protéine pourrait être un mécanisme de compensation dans le syndrome de Leigh type Canadien-Français. La suite logique de cette étude devrait avoir comme objectif d’évaluer les différences entre le profil protéique (niveau des protéines de la voie de l’hypoxie) selon le degré d’atteinte (sévérité clinique) des patients atteints du syndrome de Leigh type Canadien-Français.
|
2 |
Caractérisation de modèles pouvant modifier le métabolisme énergétique mitochondrial : syndrome de Leigh et haplogroupes mitochondriaux / Characterization of models that can modify mitochondrial energy metabolism : leigh syndrome mitochondrial haplogroupsDa Costa, Barbara 21 December 2017 (has links)
Un des rôles de la mitochondrie, qui possède son propre ADN (ADNmt), est la production de l'énergie nécessaire à la cellule, qu'elle synthétise sous forme d'ATP grâce aux oxydations phosphorylantes (OXPHOS). Ainsi, une altération du métabolisme énergétique mitochondrial peut provoquer l'apparition de pathologies mitochondriales dont, généralement, la sévérité est inversement proportionnelle à l'âge de début. De nombreuses études s'intéressent aux mécanismes d'apparition et de développement de ces maladies afin de mieux les comprendre et de pouvoir proposer des thérapies. Cependant, à ce jour, il est encore difficile de transformer l'ADNmt de façon ciblée (remaniement ou mutation). De plus, il existe encore peu de modèles animaux de pathologies mitochondriales qui permettraient de réaliser des études intégratives et d'essayer d'éventuelles molécules thérapeutiques. Dans le cadre de cette thèse, nous avons étudié deux types de modèles impliquant la modification du métabolisme mitochondrial. Dans un premier temps, nous nous sommes intéressés à la réalisation d'un modèle murin exprimant un grand nombre de caractéristiques du syndrome de Leigh, une maladie neurologique progressive. Pour cela nous avons utilisé une neurotoxine (MPTP) qui est connue pour sa toxicité envers les neurones dopaminergiques et aussi comme inhibiteur de la chaine respiratoire. Nous avons analysé l'activité de chaque complexe OXPHOS de différents tissus cérébraux et de tissus périphériques (cœur, foie, muscle et rein), prélevés sur des souris traitées et non-traitées. Nous avons retrouvé une inhibition des complexes III et/ou IV de la chaîne respiratoire dans le foie, le cortex, le striatum et le cervelet. Ces résultats, ajoutés à une neuro- dégénérescence accrue retrouvée dans une étude précédente, sont tous caractéristiques du syndrome de Leigh. Ces souris traitées par le MPTP semblent donc être un bon modèle pour l'étude de cette pathologie mitochondriale. Dans un second projet, nous nous sommes intéressés à l'effet des haplogroupes de l'ADNmt sur le métabolisme mitochondrial. En effet, bien qu'ils soient définis par des mutations neutres de l'ADNmt (polymorphismes), plusieurs études ont démontré des associations entre les haplogroupes et les pathologies, suggérant que les haplogroupes sont capables d'avoir un effet protecteur ou aggravant dans l'apparition d'une pathologie. Récemment, notre laboratoire a montré que certains haplogroupes avaient la capacité d'influencer le fonctionnement du métabolisme énergétique mitochondrial. Mon projet de recherche a donc consisté à mettre en place un modèle afin d'étudier les mécanismes cellulaires et moléculaires impliqués dans ce phénomène. Pour cela, nous avons recherché des haplogroupes d'intérêt dans la population française afin d'élaborer une collection de " cybrides " où chaque lignée de cellules possède un haplogroupe particulier mais un fonds génétique nucléaire commun à toutes les lignées. Nous avons caractérisé ces cybrides de manière biochimique (analyse de l'activité et des paramètres cinétiques de chaque complexe) et phénotypique (courbes de croissance). L'ensemble de ces résultats a été intégré dans un modèle informatique spécifiquement développé dans notre laboratoire pour modéliser la physiologie de la mitochondrie. Ce projet nous a permis de mettre en évidence l'influence des haplogroupes de l'ADNmt sur le métabolisme mitochondrial et de proposer une vision modulée des pathologies mitochondriales tant pour leur étude que pour leur diagnostic, en faisant ressortir la notion de médecine personnalisée. A l'avenir, il sera nécessaire de tenir compte du contexte génétique de l'ADNmt pour trouver de nouvelles stratégies ou de nouvelles cibles pour les thérapies des maladies mitochondriales. / The mitochondrion is an intracellular organelle responsible for the cellular energy production, by synthesizing ATP through the oxidative phosphorylation (OXPHOS). One of the characteristics of this organelle is that it has its own DNA (mtDNA) encoding for subunits of OXPHOS complexes. Any alterations of mitochondrial energy metabolism cause mitochondrial pathologies whose severity is generally inversely proportional to the age of onset. Some scientific studies are looking at the mechanisms of occurrence and development of these diseases in order to better understand them and to be able to offer therapies. However, there is no tool that can transform mtDNA in a targeted way by mutation or DNA rearrangement. Moreover, there are still few animal models of mitochondrial pathology that would allow integrative studies on the one hand, and on the other hand, to try out possible therapeutic molecules. In this thesis, we studied two types of models involving the modification of mitochondrial metabolism either by chemical treatment or by the use of mutations found in individuals. In a first part, we were interested in the realization of mouse model with a large number of characteristics of the Leigh syndrome, a progressive neurological disease characterized by neuropathological lesions associating a damage of the brain stem and the basal ganglia. For this study, we have used the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) neurotoxin, known for its toxicity to dopamine neurons and also as an inhibitor of mitochondrial respiratory chain. We analyzed the activity of the OXPHOS complexes I to IV on brain tissues (cerebelum, cortex, striatum and substancia nigra) and peripheral tissues (heart, liver, muscle and kidney) from treated and untreated mice. Inhibition of complexes III and/or IV in the liver, cortex, striatum and cerebellum was found. These results, combined with an increased neurodegeneration found in a previous study, are all characteristics of Leigh Syndrome. Mice treated with MPTP seem to be a good model for this mitochondrial pathology. In the second project, we looked at the effect of mtDNA haplogroups (haplotypes grouping) on mitochondrial metabolism. Although, haplogroups are defined by neutral mutations of mtDNA (polymorphism), several studies have shown associations between haplogroups and some pathologies suggesting that haplogroups are able to have a protective effect or being a risk factor in the pathology development. Recently, our laboratory has confirmed that some haplogroups may not be neutral and have the ability to influence the mitochondrial energy metabolism functioning. Therefore, my research project consisted of setting up a model to study these cellular and molecular mechanisms. We looked for haplogroups of interest in the population in order to elaborate a cellular collection where each cell line has a particular haplogroup but with a common nuclear genetic background in all the cell lines. This collection was obtained by cybride constructions. We characterized these cybrides biochemically by analyzing the activity of each complex, determining kinetic parameters (KM and Vmax) and titration specific respiratory chain inhibitors. Concomitantly, we defined cell parameters via growth curves. All these results were integrated into a computer model specifically developed in our laboratory to model mitochondrial processes. This project gives us some evidence of the mtDNA haplogroups' influence on mitochondrial metabolism and to propose a modulated vision of mitochondrial pathologies for their study and their diagnosis, highlighting the notion of personalized medicine. As each haplogroup modulates in the different way the mitochondrial metabolism, each individual could have a personal response to the same mutation or pathology. In future, the mtDNA genetics background should be taken into account to find new strategies or new targets for the therapies of mitochondrial diseases.
|
3 |
Caractérisation du role physiopathologique de LRPPRC chez la souris en réponse a une déficience hépato-spécifique et lors de l'expression de la mutation A354V de manière ubiquitaire.Clapatiuc, Valentin 06 1900 (has links)
La protéine mitochondriale LRPPRC (leucine-rich pentatricopeptide repeat motif containing), codée par le gène nucléaire du même nom, est impliquée dans la stabilisation des ARNm mitochondriaux, particulièrement les ARNm codants pour l’assemblage du complexe IV (COX) de la chaîne respiratoire mitochondriale (OXPHOS). Le syndrome de Leigh de type canadien français (LSFC) est une maladie mitochondriale neurodégénérative caractérisée par une mutation spécifique A354V du gène Lrpprc, et par une déficience de l’activité de COX. Les organes les plus affectés sont le foie et le cerveau mais, les mécanismes associés à la progression de la maladie restent encore peu compris. Un modèle murin à délétion hépato-spécifique en LRPPRC (H-LRPPRC KO) a été créé dans le but d’étudier l’aspect hépatique du LSFC caractérisé par des dommages et une stéatose hépatique. Représentant l’objectif 1 de ce mémoire, le modèle H-LRPPRC KO a été utilisé pour une étude de caractérisation de la stéatose hépatique non-alcoolique (SHNA) sans obésité dans laquelle nous avons pu mettre en évidence une progression plus avancée de la pathologie hépatique chez les souris mâles associée à la présence d’une dysfonction cardiaque diastolique. L’objectif 2 de ce mémoire a pour but la caractérisation d’un nouveau modèle murin plus représentatif du LSFC pour ultimement trouver de nouvelles signatures/approches thérapeutiques. Nous utilisons cette fois un modèle murin développé par nos collaborateurs, à délétion inductible (KI), par le tamoxifène, de Lrpprc sur un allèle tandis que le deuxième exprime la mutation A354V spécifique au LSFC pour ainsi caractériser la maladie d’un point de vue biochimique et moléculaire. Nos premiers résultats montrent des signatures et caractéristiques comparables à celles observées chez les patient(e)s LSFC et dans le modèle H-LRPPRC KO avec une perte de poids drastique, une diminution des niveaux de la protéine LRPPRC et de COX et plusieurs perturbations du profil lipidomique dans le foie, le plasma et le cerveau. Ces résultats posent les bases biochimiques et moléculaires de ce modèle pour justifier son utilisation ultérieure pour l’évaluation des manifestations cliniques comme les atteintes musculaires et encore cognitives tel qu’observé chez les personnes atteintes de LSFC. / The mitochondrial protein LRPPRC (leucine-rich pentatricopeptide repeat motif containing), encoded by the nuclear gene of the same name, is involved in the stabilization of mitochondrial mRNAs, particularly those coding for the assembly of complex IV (COX) of the mitochondrial respiratory chain (OXPHOS). Leigh syndrome French Canadian type (LSFC) is a mitochondrial neurodegenerative disease characterized by a specific A354V mutation in the Lrpprc gene as well as a deficiency in COX activity. The most affected organs are the liver and brain, but the mechanisms associated with disease progression remain poorly understood. A hepato-specific knockout of LRPPRC mouse model (H-LRPPRC KO) was created to study the hepatic aspect of LSFC which includes liver damage and steatosis. Defined as the first objective of this master’s thesis, the H-LRPPRC KO model was used for the characterization of non-alcoholic hepatic steatosis (NAHS) without obesity in which we were able to highlight a more advanced progression of liver pathology in male mice associated with the presence of cardiac diastolic dysfunction. Furthermore, the second objective of this master’s thesis aims to characterize a new mouse model more representative of LSFC to ultimately find new therapeutic signatures/approaches. Here, we use a mouse model developed by our collaborators with tamoxifen-inducible deletion (KI) of Lrpprc on one allele, while the second one expresses the LSFC-specific A354V mutation, to characterize the disease from a biochemical and molecular perspective. Our initial results show signatures and characteristics comparable to those observed in LSFC patients as well as in the H-LRPPRC KO model, with drastic weight loss, reduced protein levels of LRPPRC and COX, and several disturbances of the lipidomic profile in liver, plasma and brain. These results lay the biochemical and molecular foundations of this model, justifying its future use in the evaluation of clinical manifestations such as muscular and cognitive impairment as observed in LSFC patients.
|
Page generated in 0.0698 seconds