• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 22
  • 12
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 169
  • 60
  • 47
  • 42
  • 30
  • 27
  • 23
  • 23
  • 21
  • 19
  • 18
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Syngas Impurity Effects on Cell Growth, Enzymatic Activities and Ethanol Production via Fermentation

Xu, Deshun 26 October 2012 (has links) (PDF)
A syngas compositional database with focus on trace impurities was established. For this work, ammonia (NH3) and benzene (C6H6) effects on cell growth, enzymatic activities of hydrogenase and alcohol dehydrogenase (ADH), and product formation were studied. NH3, after entering media, will be converted rapidly to NH4+, which will raise the total osmolarity of the media. NH3, as a common nutrient for the cell growth, is not the real culprit for cell growth inhibition. In essence, it is the high osmolarity resulting from the accumulation of NH4+ in the media which disrupts the normal regulation of the cells. It was concluded that at NH4+ concentration above 250 mM, the cell growth was substantially inhibited. However, P11 cells used in this study can likely adapt to an elevated osmolarity (up to 500 mM) although the mechanism is unknown. It was also found that higher osmolarity will eventually lead to higher ethanol per cell density. In conclusion, NH3 needs to be cleaned out of syngas feeding system. The realistic C6H6 concentration in the media coming from a gasifier was simulated in bioreactors and was measured by a GC/MS. The most realistic C6H6 concentration in the media was around 0.41 mM (upper limit 0.83 mM). However, five elevated concentrations of 0.64, 1.18, 1.72, 2.33, and 3.44 mM were doped into the media. It was found that at 3.44 mM cell growth and ethanol production were significantly affected. However, there was only negligible adverse effect on cell growth and ethanol production at 0.41 mM, which is the expected concentration in bioreactors exposed to syngas. Therefore, it is unnecessary to remove C6H6 from the gas feeding stream. A kinetic model for hydrogenase activity that included inhibition effects of NH4+ and C6H6 was developed. Experimental results showed that NH4+ is a non-competitive inhibitor for hydrogenase activity with KNH4+ of (649 ± 35) mM and KH2 of (0.19 ± 0.1) mM. This KH2 value is consistent with those reported in literature. C6H6 is also a non-competitive inhibitor but a more potent one compared to NH4+ (KC6H6=11.4 ± 1.32 mM). A KH2 value of (0.196 ± 0.022) mM is also comparable with literature and also with the NH4+ study. At a realistic C6H6 concentration of 0.41 mM expected in bioreactors exposed to syngas, hydrogenase activity is expected to be reduced by less than 5%. Forward ADH activity was not adversely affected up to 200 mM [NH4+].From the current work, NH3 should be targeted for removal but it is not necessary to remove C6H6 when designing an efficient gas cleanup system.
42

Process Simulation of Plasma Gasification for Landfill Waste

Boon Hau, Tan January 2018 (has links)
The growing amount of landfill waste within the EU could pose a problem in the future should there not be any effective treatment methods. This study aims to investigate the performance of landfill waste in a plasma gasification process by simulating the process in ASPEN Plus. The investigation is focused on the energy recovery potential of RDF based on composition and heating value of syngas, and cold gas efficiency (CGE). The plasma gasification system consists of a shaft gasifier and a separate tar cracking reactor where high temperature plasma is used for conversion of tar compounds considered in the model, which are toluene and naphthalene. In addition, the model is divided into five sections, namely drying, pyrolysis, char gasification, melting and tar cracking. Mass and energy balance of the system was performed to better understand the system. The results show that the plasma gasification system was able to produce a syngas with a LHV of 4.66 MJ/Nm3 while improving syngas yield by attaining a higher content of hydrogen. Thus, the plasma tar cracking of tar compounds can achieve a clean syngas and improve syngas yield. Parameter study on effect of ER show that syngas has higher heating value and CGE at lower ER. On the other hand, preheated air can help recover energy from the system while lowering the ER required for the char gasification process to meet the heat demand from partial combustion. The findings implied that landfill waste has energy potential by using a suitable treatment process such as plasma gasification.
43

Characterization Of A Hydrogen-based Synthetic Fuel In A Shock Tube

Flaherty, Troy 01 January 2009 (has links)
Shock-tube experiments were performed with syngas mixtures near atmospheric pressure with varying equivalence ratios behind reflected shock waves. Pressure and hydroxyl radical (OH*) emission traces were recorded and used to calculate ignition delay time for a single mixture at equivalence ratios of [phi ]=0.4, 0.7, 1.0, and 2.0 over a range of temperatures from 913-1803 K. The syngas mixture was tested at full concentration as well as with 98% dilution in Argon. The full concentration mixtures were used to compare ignition delay time measurements with the theoretical calculations obtained through the use of chemical kinetics modeling using the Davis et al. mechanism. The dilute mixtures were used to study the OH* emission profiles compared to those of the kinetics model. The model was in poor agreement with the experimental data especially at lower temperatures with an ignition delay difference of more than an order of magnitude. These ignition delay time data supplement the few existing data and are in relative agreement. The species profile comparison of OH* compared to the model also showed poor agreement, with the worst agreement at the highest temperatures. While the disagreements with ignition delay time and profile comparisons cannot be explained at this time, the data presented support other findings. The data provide additional information towards understanding this disagreement relative to syngas mixtures despite the relatively well known kinetics of the primary constituents Hydrogen and Carbon Monoxide.
44

Cost Analysis and Evaluation of Syngas Synthesis through Anaerobic Digestion

Tong, Yun January 2012 (has links)
No description available.
45

Synthesis of Ethanol from High Pressure Syngas over Rhodium-Based Catalysts

Sheerin, Ephraim A. 27 October 2014 (has links)
No description available.
46

BIOETHANOL AND BIOBUTANOL PRODUCTION WITH CLOSTRIDIUM CARBOXIDIVORANS, CLOSTRIDIUM BEIJERINCKII, AND CO-CULTURE FROM BIOMASS: CARBON DIOXIDE/HYDROGEN GAS VS. GLUCOSE FERMENTATION

Youn, Gukhee S. 21 September 2017 (has links)
No description available.
47

Non-Catalytic Production of Hydrogen via Reforming of Diesel, Hexadecane and Bio-Diesel for Nitrogen Oxides Remediation

Hernandez-Gonzalez, Sergio Manuel 24 December 2008 (has links)
No description available.
48

Electrocatalytic reactors for syngas production from natural gas

Samiee, L., Rahmanian, Nejat 12 January 2024 (has links)
No / The emission of greenhouse gases on a global scale is predominantly caused by the utilization of fossil fuels. Various methods have been explored to address the recycling of CO2, which among, the CO2 conversion into high-value chemicals become so promising. The purpose of this book chapter evaluation is CO2 reduction and H2 evolution reactions for producing syngas. A comprehensive analysis shall highlight (i) the technical advantages and impediments of various reactor classifications, (ii) the effect of electrolytes on electrolyzers in the liquid phase, and (iv) the catalysts that are viable for the creation of important products such as CO.
49

Tandem Catalysis for Selective C1-to-C3 Chain Propagations towards Platform Chemicals Production

Andrés Marcos, Eva 03 May 2025 (has links)
[ES] El actual enfoque hacia la desfosilización de la industria química acentúa la necesidad de desarrollar procesos químicos medioambientalmente más sostenibles. El diseño de sistemas catalíticos en tándem para llevar a cabo reacciones mecanísticamente desacopladas en un solo reactor, representa una estrategia prometedora para potencialmente reducir el tamaño de las instalaciones y alcanzar mayores eficiencias energéticas y económicas. El gas de síntesis y sus derivados directos C1 (metanol, DME) representan una atractiva fuente de carbono no derivada del petróleo para la producción de productos químicos. La propagación selectiva de cadena desde compuestos C1 hasta específicamente productos sigue siendo un desafío importante en el campo de la catálisis heterogénea. En esta tesis, se presenta cómo el diseño racional de un sistema catalítico en tándem, multifuncional y heterogéneo, proporciona una ruta novedosa y alternativa para la síntesis directa de productos C3 de interés a partir de compuestos C1. En este trabajo, se ha estudiado la integración en tándem de la reacción de carbonilación de compuestos metoxi (DME) con CO, con la posterior cetonización de los productos carboxílicos C2 intermedios correspondientes en un sistema catalítico multifuncional. La integración de los catalizadores Ag/MOR y Pd/ZrCeOx respectivamente, permite la síntesis directa de acetona a partir de mezclas de DME/gas de síntesis a 548 K y 20 bares. La incorporación de H-FER nanocristalina en un catalizador multifuncional metal/óxido/zeolita Pd/ZrCeOx:FER, como funcionalidad específica de hidrólisis del acetato de metilo, ha permitido la obtención de rendimientos a acetona hasta tres veces mayores en comparación con los obtenidos utilizando solamente el catalizador metal/óxido. La funcionalidad específica de hidrólisis se ha incorporado en base a los resultados de estudios cinéticos realizados para las etapas de reacción por separado, que revelan una limitación general de la velocidad de cetonización a partir del paso de hidrólisis ácida del intermedio acetato de metilo. A una distancia intercatalítica en el rango de micrómetros, se ha mantenido una conversión de DME estable (superior al 94%), junto con una selectividad de acetona del 65-70% (entre los productos orgánicos) durante al menos 10 días de operación continua. Además, la atmósfera de gas de síntesis a alta presión permite la integración de la hidrogenación de grupos carbonilo, abriendo la puerta para la producción de 2-propanol en un solo reactor. En particular, la incorporación del catalizador de hidrogenación Ag-Pt/¿-Al2O3 ha permitido alcanzar una selectividad de 2-propanol del 51% dentro de la fracción de productos C3. Finalmente, el concepto de conversión en tándem mencionado anteriormente se ha extendido a la conversión directa de mezclas de DME/gas de síntesis a propileno. Con este fin, se han desarrollado catalizadores basados en Ag/SiO2 como una funcionalidad de hidrodeshidratación de acetona y se han acoplado al sistema catalítico multifuncional en tándem desarrollado para la producción de acetona. A una temperatura de reacción en el rango de 548-578 K y una presión total de 15 bares, el sistema catalítico en tándem proporciona ratios propileno-a-etileno en el rango 6-9, y selectividades de propileno de hasta el 40%, para una conversión de DME >97%, demostrando que esta ruta de producción es intrínsecamente más selectiva hacia propileno que la mayoría de los procesos de metanol-a-propileno reportados. Además, la temperatura de reacción relativamente suave y el carácter reductor de la atmósfera de gas de síntesis inhiben la deposición de coque, proporcionando un comportamiento estable durante períodos de operación superiores a 214 horas. Aunque se requiere mayor optimización en cuanto al rendimiento a propileno, los resultados abren la puerta a un nuevo proceso para la producción de propileno a partir de materias primas C1, alternativo a los procesos de metanol-a-hidrocarburos. / [CA] L'actual enfocament cap a la desfossilització de la indústria química accentua la necessitat de desenvolupar processos químics mediambientalment més sostenibles. En aquest context, el disseny de sistemes catalítics en tàndem per a dur a terme reaccions mecanísticamente desacoblades en un sol reactor, representa una estratègia prometedora per potencialment reduir la grandària de les instal·lacions i aconseguir majors eficiències energètiques i econòmiques. El gas de síntesi i els seus derivats directes C1 (metanol, DME) representen una atractiva font de carboni no derivada del petroli. La propagació selectiva de cadena des de compostos C1 fins específicament productes C3 continua sent un desafiament important en el camp de la catàlisi heterogènia. En aquesta tesi, es presenta com el disseny racional d'un sistema catalític en tàndem, multifuncional i heterogeni, proporciona una ruta nova i alternativa per a la síntesi directa de productes C3 d'interés a partir de compostos C1. En aquest treball, s'ha estudiat la integració en tàndem de la reacció de carbonilació de compostos metoxi (DME) amb CO, amb la posterior cetonització dels productes carboxílics C2 intermedis corresponents en un sistema catalític multifuncional. La integració dels catalitzadors Ag/MOR i Pd/ZrCeOx respectivament, permet la síntesi directa d'acetona a partir de mescles de DME/gas de síntesi a 548 K i 20 bars. La incorporació d'H-FER nanocristalina en un catalitzador multifuncional metall/òxid/zeolita Pd/ZrCeOx:FER, com a funcionalitat específica d'hidròlisi de l'acetat de metil, intermedi en el procés global, ha permés l'obtenció de rendiments a acetona fins a tres vegades majors en comparació amb els obtinguts utilitzant solament el catalitzador metall/òxid, Pd/ZrCeOx. La funcionalitat específica d'hidròlisi s'ha incorporat sobre la base dels resultats d'estudis cinètics realitzats per a les etapes de reacció per separat, que revelen una limitació general de la velocitat de cetonització a partir del pas d'hidròlisi àcida de l'intermediari acetat de metil. A una distància intercatalítica en el rang de micròmetres, s'ha mantingut una conversió de DME estable (superior al 94%), juntament amb una selectivitat d'acetona del 65-70% (entre tots els productes orgànics) durant almenys 10 dies d'operació contínua. A més, l'atmosfera de gas de síntesi a alta pressió permet la integració de la hidrogenació de grups carbonil, obrint la porta per a la producció no sols d'acetona, sinó també de 2-propanol en un sol reactor. En particular, la incorporació del catalitzador d'hidrogenació Ag-Pt/¿-Al2O3 ha permés aconseguir una selectivitat de 2-propanol del 51% dins de la fracció de productes C3 (és a dir, acetona, 2-propanol, propà i propilé). Finalment, el concepte de conversió en tàndem esmentat anteriorment s'ha estés a la conversió directa de mescles de DME/gas de síntesi a propilé. A aquest efecte, s'han desenvolupat catalitzadors basats en Ag/SiO2 com una funcionalitat de hidro-deshidratació d'acetona i s'han acoblat al sistema catalític multifuncional en tàndem desenvolupat per a la producció d'acetona. A una temperatura de reacció en el rang de 548-578 K i una pressió total de 15 bars, el sistema catalític multifuncional en tàndem proporciona ràtios propilé-a-etilé en el rang 6-9, i selectivitats de propilé de fins al 40%, per a una conversió de DME >97%, demostrant que aquesta ruta de producció és intrínsecament més selectiva cap a propilé que la majoria dels processos de metanol-a-propilé reportats. A més, la temperatura de reacció relativament suau i el caràcter reductor de l'atmosfera de gas de síntesi inhibixen la deposició de coc, proporcionant un comportament estable durant períodes d'operació superiors a 214 hores. Encara que es requereix una major optimització quant al rendiment a propilé, els resultats obrin la porta a un nou procés per a la producció de propilé a partir de matèries primeres C1, alternatiu als processos de metanol-a-hidrocarburs. / [EN] The present focus on advancing towards a defossilized chemical industry underscores the need for developing more environmentally sustainable chemical processes. In this context, the design of tandem-catalytic systems to steer mechanistically decoupled reactions in a cascade fashion, in a single reactor, represents a promising strategy for potentially reduce the installed size of chemical processes and attain higher energy- and cost-efficiencies. Synthesis gas and its direct C1 derivatives (methanol, DME), represent an attractive non-petroleum derived carbon source for the production of commodity chemicals. The selective chain propagation from C1 building blocks to specifically C3 compounds has been demonstrated through biocatalytic routes, however it remains an important challenge for heterogeneous catalysis. In this thesis, we report how the design and engineering of a multifunctional, heterogeneous tandem-catalytic system provides a novel and alternative route for the direct synthesis of C3 compounds from C1 building blocks. The selective obtention of C2+ products with specific chain lengths, surpassing the inherently non-selective C-C chain propagation characteristic of Fischer-Tropsch polymerization reactions, poses a significant challenge. In this work, the tandem integration of the reaction of carbonylation of methoxy compounds (DME) with CO, with subsequent ketonisation of the corresponding C2 carboxylic intermediate products on a multifunctional catalytic system is reported. The integration of an optimized Ag/MOR and Pd/ZrCeOx catalysts, respectively, allows the direct synthesis of acetone from DME/syngas mixtures at 548 K and 20 bar. Enhanced acetone time-yields, i.e. by a factor greater than three, have been obtained by incorporation of nanosized H-FER, as a specific ester hydrolysis functionality in a Pd/ZrCeOx:FER metal/oxide/zeolite multifunctional ketonisation composite catalyst. The specific hydrolysis functionality was implemented based on insights from kinetic studies on the individual reaction steps revealing overall ketonisation rate limitation from the methyl acetate intermediate acid-catalysed hydrolysis step. At the micro-meter range carbonylation/ketonisation intercatalysts spacing, a noticeably stable DME conversion (of >94%), alongside ca. 65-70% acetone selectivity (within all organic products) has been sustained for at least 10 days on-stream. Furthermore, the high-pressure syngas atmosphere allows integrating the hydrogenation of carbonyl groups therefore opening the door for the production of not only acetone but also 2-propanol in a single reactor. Particularly, Ag-Pt/¿-Al2O3 hydrogenation catalyst afforded reaching a 2-propanol selectivity of 51% within the C3 products fraction (i.e. acetone, 2-propanol, propane and propylene). Finally, the above tandem conversion concept has been extended to the direct conversion of DME/syngas mixtures to propylene. To this end, Ag/SiO2 catalysts have been developed as an acetone hydrodehydration functionality and coupled to the multifunctional catalytic-tandem system developed for acetone production from DME/syngas mixtures. At a reaction temperature in the range of 548-578 K and a total pressure of 15 bar, the multifunctional catalytic system affords a remarkably high propylene-to-ethylene molar ratio of 6-9 and overall propylene selectivities up to 40%, at essentially full DME conversion (>97%), proving this production route intrinsically more selective to propylene than most of methanol-to-propylene processes. Moreover, the comparatively mild reaction temperature and the reducing character of the syngas atmosphere inhibit coke deposition, leading to stable performance for times-on-stream in excess of 214 hours. While future improvements in propylene time-yield will be required, the results open the door to a new process for propylene production from C1 feedstocks, alternative to methanol-to-hydrocarbons processes. / I would like to thank the Spanish Ministry of Science, Innovation and Universities (MCIU) for my FPU fellowship (FPU17/04751) and the European Research Council (ERC) under the Horizon 2020 research and innovation program (ERC-CoG- TANDEng; grant agreement 864195), which have made possible the realization of this thesis. BASF SE (Ludwigshafen, Germany) is gratefully acknowledged for their support to fundamental research efforts in catalysis, a portion of which has contributed to the outcomes presented in this PhD thesis. I would also like to thank the Spanish Research Council (CSIC) and, particularly, the Institute of Chemical Technology (ITQ), for providing the infrastructure where I have developed my PhD work. Next, I want to thank the Massachusetts Institute of Technology (MIT) for giving me access to their facilities during my short PhD research stay, and to the ALBA synchrotron, especially to the CLÆSS beamline, for the several beamtimes granted. Finally, I would like to thank the department of Chemical and Nuclear Engineering (DIQN) of the Polytechnic University of Valencia (UPV), for hosting me as a teaching assistant over these years / Andrés Marcos, E. (2024). Tandem Catalysis for Selective C1-to-C3 Chain Propagations towards Platform Chemicals Production [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/204891
50

Quantitative Laser-Based Diagnostics and Modelling of Syngas-Air Counterflow Diffusion Flames

Sahu, Amrit Bikram January 2015 (has links) (PDF)
Syngas, a gaseous mixture of H2, CO and diluents such as N2, CO2, is a clean fuel generated via gasification of coal or biomass. Syngas produced via gasification typically has low calorific values due to very high dilution levels (~60% by volume). It has been recognized as an attractive energy source for stationary power generation applications. The present work focuses on experimental and numerical investigation of syngas-air counterflow diffusion flames with varying composition of syngas. Laser-based diagnostic techniques such as Particle Imaging Velocimetry, Rayleigh thermometry and Laser-induced fluorescence have been used to obtain non-intrusive measurements of local extinction strain rates, temperature, quantitative OH and NO concentrations, respectively, for three different compositions of syngas. Complementing the experiments, numerical simulations of the counterflow diffusion flame have been performed to assess the performance of five H2/CO chemical kinetic mechanisms from the literature. The first part of the work involved determination of local extinction strain rates for six H2 /CO mixtures, with H2:CO ratio varying from 1:4 to 1:1. The extinction strain rates were observed to increase from 600 sec-1 to 2400 sec-1 with increasing H2:CO ratio owing to higher diffusivity and reactivity of the H2 molecule. Numerical simulations showed few mechanisms predicting extinction conditions within 5% of the measurements for low H2:CO ratios, however, deviations of 25% were observed for higher H2 :CO ratios. Sensitivity analyses revealed that the chain branching reactions, H+O2 <=>O+OH, O+H2 <=>H+OH and the third body reaction H+O2 +M<=>HO2 +M are the key reactions affecting extinction limits for higher H2:CO mixtures. The second phase of work involved quantitative measurement of OH species concentration in the syngas-air diffusion flames at strain rates varying from 35 sec-1 to 1180 sec-1. Non-intrusive temperature measurements using Rayleigh thermometry were made in order to provide the temperature profile necessary for full quantification of the species concentrations. The [OH] is observed to show a non-monotonous trend with increasing strain rates which is attributed to the competition between the effect of increased concentrations of H2 and O2 in the reaction zone and declining flame temperatures on the overall reaction rate. Although the kinetic mechanisms successfully captured this trend, significant deviations were observed in predictions and measurements in flames with H2:CO ratios of 1:1 and 4:1, at strain rates greater than 800 sec-1 . The key reactions affecting [OH] under these conditions were found to be the same reactions identified earlier during extinction studies, thus implying a need for the refinement of their reaction-rate parameters. Significant disagreements were observed in the predictions made using the chemical kinetic mechanisms from the literature in flames with high H2 content and high strain rate. The final phase of work focused on measurement of nitric oxide (NO) species concentrations followed by a comparison with predictions using various mechanisms. NO levels as high as ~ 48 ppm were observed for flames with moderate to high H2 content and low strain rate. Quantitative reaction pathway diagrams (QRPDs) showed thermal-NO, NNH and prompt-NO pathways to be the major contributors to NO formation at low strain rates, while the NNH pathway was the dominant route for NO formation at high strain rates. The absence of an elaborate CH chemistry in some of the mechanisms has been identified as the reason for underprediction of [NO] in the low strain rate flames. Overall, the quantitative measurements reported in this work serve as a valuable reference for validation of H2/CO chemical kinetic mechanisms, and the detailed numerical studies while providing an insight to the H2:CO kinetics and reaction pathways, have identified key reactions that need further refinement.

Page generated in 0.0312 seconds