• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of a syngas from coal production plant coupled to a high temperature nuclear reactor / Simulation of a cogeneration plant coupled to a high temperature reactor

Botha, Frederick Johannes 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: In light of the rapid depletion of the world’s oil reserves, concerns about energy security prompted the exploration of alternative sources of liquid fuels for transportation. One such alternative is the production of synthetic fuels with the indirect coal liquefaction process or Coal-To-Liquids (CTL) process. In this process, coal is burned in a gasifier in the presence of steam and oxygen to produce a synthesis gas or syngas, consisting mainly of hydrogen and carbon monoxide. The syngas is then converted to liquid fuels and a variety of useful chemicals in a Fischer Tropsch synthesis reactor. However, the traditional process for syngas production also produces substantial amounts of carbon dioxide. In fact, only about one third of the carbon in the coal feedstock ends up in the liquid fuel product using traditional CTL technology. If additional hydrogen was available, the carbon utilisation of the process could be improved significantly. The high temperature reactor (HTR) is a gas cooled Generation IV nuclear reactor ideally suited to provide electrical power and high temperature heat for the production of carbon neutral hydrogen via high temperature electrolysis. The integration of an HTR into a CTL process therefore provides an opportunity to improve the thermal and carbon efficiency of the CTL process significantly. This thesis presents a possible process flow scheme for a nuclear assisted CTL process. The system is evaluated in terms of its thermal or syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the HTR heat input) as well as its carbon utilisation. If the hydrogen production plant is sized to produce only enough associated oxygen to supply in the needs of the gasification plant, syngas is produced at about 63% thermal efficiency, while 71.5% of the carbon is utilised in this process. It was found that the optimum HTR outlet temperature to produce hydrogen with a high temperature steam electrolysis process is 850°C. If enough process heat and electrical power are available and process equipment capacities are sufficient, the carbon utilisation of the process could be improved even further to values in excess of 90%. / AFRIKAANSE OPSOMMING: Die uitputting van die wêreld se olie-reserwes, asook kommer oor energiesekuriteit het daartoe gelei dat alternatiewe bronne van vloeibare brandstowwe vir vervoer ondersoek moes word. Een so 'n alternatief is die produksie van sintetiese brandstof d.m.v. die indirekte steenkool vervloeiing proses of sogenaamde Coal-To-Liquids (CTL) proses. In hierdie proses word steenkool in die teenwoordigheid van stoom en suurstof in 'n vergasser gebrand om 'n sintesegas of singas te produseer, wat hoofsaaklik uit waterstof en koolstofmonoksied bestaan. Die sintesegas word daarna omgeskakel na vloeibare brandstowwe en 'n verskeidenheid van nuttige chemikalieë in 'n Fischer-Tropsch-sintese reaktor. Ongelukkig produseer die tradisionele proses vir sintesegas produksie ook 'n beduidende hoeveelheid koolstofdioksied. Trouens, slegs sowat een derde van die koolstof in die steenkool roumateriaal eindig in die vloeibare brandstof produk indien van tradisionele CTL-tegnologie gebruik gemaak word. Indien addisionele waterstof beskikbaar was, kon die koolstofbenutting van die proses aansienlik verbeter word. Die hoë temperatuur reaktor (HTR) is 'n gas-verkoelde Generasie IV kernreaktor wat by uitstek geskik is om elektrisiteit en hoë temperatuur hitte te verskaf vir die produksie van koolstofneutrale waterstof d.m.v. hoë temperatuur elektrolise. Die integrasie van 'n HTR in 'n CTL-proses bied dus 'n geleentheid om die termiese- en koolstofdoeltreffendheid van die CTL-proses aansienlik te verbeter. In hierdie ondersoek word 'n moontlike proses vloeidiagram vir 'n kern-gesteunde CTL-proses voorgestel. Die stelsel is geëvalueer in terme van sy termiese- of sintesegas produksie doeltreffendheid (gedefinieer as die verhouding van die hittewaarde van die geproduseerde sintesegas gedeel deur die som van die hittewaarde van die steenkool en die HTR hitte-insette) sowel as sy koolstof-effektiwiteit. Indien die waterstof produksie-aanleg ontwerp word om net genoeg geassosieerde suurstof te voorsien om in die behoeftes van die vergassing-aanleg te voorsien, word sintesegas teen ongeveer 63% termiese doeltreffendheid vervaardig, terwyl 71.5% van die koolstof in hierdie proses benut word. Daar is bevind dat 850°C die optimum HTR uitlaat temperatuur is om waterstof d.m.v. hoë temperatuur stoom-elektrolise te vervaardig. Indien daar genoeg proses hitte en elektrisiteit beskikbaar is en die proses toerusting kapasiteite voldoende is, sou die koolstof-benutting van die proses tot meer as 90% verbeter kon word.

Page generated in 0.1138 seconds