Spelling suggestions: "subject:"lasynthèse hautes pressions"" "subject:"desynthèse hautes pressions""
1 |
Synthèse hautes pressions et propriétés mécaniques de nouveaux nitrures, M₇N₉ (M=Zr,Hf) en comparaison avec c-Zr₃N₄ et ƞ-Ta₂N₃ / High-pressures synthesis and mechanical properties of novel nitrides, M₇N₉ (M=Zr,Hf) compared to c-Zr₃N₄ et ƞ-Ta₂N₃Bourguille, Judith 11 December 2015 (has links)
Les nitrures binaires des métaux de transition synthétisés à hautes pressions et hautes températures sont de nouveaux matériaux dont le principal intéret réside dans leur multifonctionalité. Dans cette thèse, nous avons synthétisé de nouveaux nitrures de zirconium et d’hafnium, à une pression inférieure à celle de formation des composés cubiques c-M₃N₄ (M=Zr, Hf), mais supérieure à la pression de formation des mononitrures δ-MN. Les mesures par diffraction de rayons X, ont montré que la structure cristalline de ces composés est monoclinique de type Ca₃Tl₄O₉. La composition chimique M₇N₉ (avec une substitution mineure de l’azote par l’oxygène) vérifiée par une analyse quantitative par microsonde électronique suggère la présence de cations métalliques dans des états d’oxydation +3 et +4. Cette observation indique, pour les autres métaux de transition, la possibilité de former à hautes pressions divers nitrures thermodynamiquement stable avec un large éventail de valeur pour le rapport N:M. Les valeurs des modules élastiques pour les échantillons poreux de Zr₇ N₉ et Hf₇N₉ ont été obtenus par mesures laser ultrasonique (LU) et par nanoindentation. Les résultats pour les matériaux denses ont été dérivés en appliquant l’approche d’Hashin- Shtrickman précédemment développée. Nous obtenons ainsi G₀ = 95(9) GPa et B₀ = 130(10) GPa pour Zr₇N₉ et G₀ = 105(10) GPa et B₀ = 161(10) GPa pour Hf₇N₉. La mesure de la nanodureté donne Hn = 8.0(8) GPa et Hn = 9.1(7) GPa pour Zr₇N₉ et Hf₇N₉ respectivement. Finalement, pour Zr₇N₉ , la dureté de Vickers a été déterminée, Hv = 6.5 GPa et est en accord avec la mesure par nanoindentation. Nous avons dérivé la ténacité soit KIc-if = 3.7(4) MPa.m½ pour Zr₇N₉ . La propriété de self-healing a été partiellement observée pour le nouveau nitrure de zirconium. Pour Hf₇N₉, nous obtenons une valeur moyenne Hv = 6.4(1.0) GPa et une ténacité de 2.3-2.9 MPa.m½. Denses, ces matériaux sont supposés avoir une dureté de l’ordre de 10 GPa et la ténacité de Zr₇N₉ similaire à celle de c-Zr₃N₄, matériau poreux. Pour vérifier la méthode de nanoindentation appliquée dans cette thèse, nous avons réalisé une série de tests sur l’échantillon c-Zr₃N₄ précédemment étudié par LU et nanoindentations mais à de plus faibles profondeurs. Nous avons mesuré le module d’Young réduit, Er, pour le matériau poreux c-Zr₃N₄ et en utilisant la valeur du module d’élasticité isostatique B₀ (mesurée indépendamment par LU ou par l’équation d’état) nous avons déterminé les autres modules élastiques d’un matériau polycristallin, qui sont en accord avec les études LU précédemment présentées. La raison pour laquelle nous avons une moins bonne concordance avec les précédentes données de nanoindenation a été découverte. Pour vérifier d’avantage l’application des mesures par nanoindentation, étendre notre connaissance des propriétés de η-Ta₂N₃ et comparer ce matériaux avec M₇N₉, nous avons examiné un échantillon poreux de η-Ta₂N₃ plus en détail : Er et Hn ont été obtenus à la fois pour l’échantillon poli mécaniquement et pour l’échantillon non modifié et ont montré une différence de comportement sur les 400 premiers nanomètres de la mesure, ce qui a confirmé l’effet de “self-healing”, soit une densification de la surface d’une épaisseur similaire à la taille des grains de polissage. A partir des mesures aux plus grandes profondeurs, nous obtenons E₀= 329-369 GPa et n₀ 0.28-0.33, après calcul à partir de la valeur de la porosité (14%), de B₀ précédemment mesuré et en utilisant l’approche d’Hashin-Shtrickman. La valeur mesurée de la nanodureté s’est révélée être Hn = 18.3 GPa. Enfin, la mesure par dureté de Vickers, Hv, a confirmé les mesures par nanoindentation et montré l’existence d’un effet de la taille de l’indentation pour ce matériau. Pour le matériau dense, nous estimons que Hv > 24 GPa [...] / ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₀
Binary nitrides of transition metals synthetized at high pressures and high temperatures are new materials which are of interest due to their multifunctionality : They can have combinations of advanced properties, among them elevated elastic moduli, high hardness, high fracture toughness, chemical stability and some of them were found to be suitable for optoelectronic applications. Since the first synthesis of c-Zr₃N₄ in 2003 the studies on such materials extended. For example, c-Zr₃N₄ was found to have a high hardness and an exceptional wear resistance by milling of ferric alloys. ƞ-Ta₂N₃ having orthorhombic structure has a higher B₀ than c-Zr₃N₄ and a similar shear modulus G₀. Moreover, a self-healing effect upon mechanical polishing of a porous ƞ-Ta₂N₃ sample was recognised. There are also reports about synthesis of noble metal nitrides at high pressures and temperatures but these compounds are not recoverable to ambient conditions. In this work we synthetized new nitrides of zirconium and hafnium at pressures below those where c-M₃N₄ (M=Zr, Hf) form but above the pressures of formation of mononitrides δ-MN. X-ray diffraction measurements showed that their crystal structure is monoclinic of the type Ca₃Tl₄O₉. The chemical composition M₇N₉ (with a minor substitution of nitrogen by oxygen), verified by quantitative microprobe analysis, suggests presence of metal cations in the oxidation states +3 and + 4. This observation suggests for other transition metals the possibility to form at high pressures thermodynamically stable nitrides with the N:M ratio varying in a broad range. Elastic moduli of the porous samples of Zr₇N₉ and Hf₇N₉ were measured using laser ultrasonics (LU) and nanoindentation. Values for the dense samples were derived by applying the earlier developed Hashin-Shtrickman approach. We obtained G₀ = 95(9) GPa and B₀ = 130(10) GPa for Zr₇N₉ and G₀ = 105(10) GPa and B₀ = 161(10) GPa for Hf₇N₉. The nanohardness was measured to be Hn = 8.0(8) GPa and Hn = 9.1(7) GPa for Zr₇N₉ and Hf₇N₉, respectively. Vickers hardness of Zr₇N₉ was determined to be Hv = 6.5 GPa which is in agreement with our nanoindentation measurements. We derived its fracture toughness to be KIc-if = 3.7(4) MPa.m½, similar to that of c-Zr₃N₄, and recognised a weak self-healing behaviour. For Hf₇N₉, we obtained an average value of Hv = 6.4(1.0) GPa and KIc-if = 2.3-2.9 MPa.m½. Hardness of dense samples of Zr₇N₉ and Hf₇N₉ was estimated to be ~10 GPa. In order to verify the nanoindentation method we applied in this work, we performed tests on the c-Zr₃N₄ sample studied previously by LU and nanoindentation but at much shallower depths. We measured the reduced Young's modulus, Er, for the porous sample, and, applying the known B₀ (form laser ultrasonic- or equation of state measurements), we determined other elastic moduli for the porous and dense polycrystalline sample, which were in agreement with the earlier LU studies. Reasons for a less good agreement with the earlier nanoindentation data were disclosed. In order to further verify the applied nanoindentation method and extend our knowledge about properties of ƞ-Ta₂N₃ and compare this material with M₇N₉, we examined a porous sample of ƞ-Ta₂N₃ in more detail : Er and Hn obtained for the mechanically polished sample and for the non modified sample showed a distinct behaviour in the first 400 nm of indentation thus confirming the "self-healing" effect at the thickness similar to the size of the polishing grains. From Er measured at larger depths we derived E₀= 329-369 GPa and v₀= 0.28-0.33 using the porosity value (14%), the earlier measured B₀ and applying the Hashin-Shtrickman approach. The nanohardness was measured to be Hn = 18.3 GPa. Measurements of Vickers hardness confirmed our nanoindentation results and revealed the indentation size. For the dense ƞ-Ta₂N₃ we estimate Hv > 24 GPa.
|
Page generated in 0.093 seconds