• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanistic studies of functional mononuclear and binuclear non-heme iron enzyme model complexes using variable temperature stopped-flow UV/vis spectroscopy

Gregor, Lauren Christine 22 January 2016 (has links)
Variable-temperature stopped-flow (VT-SF) electronic spectroscopy (-85 to -50°C) was utilized to study the reactivity properties of a family of synthetic mononuclear and binuclear non-heme iron enzyme active site analogs. This technique was used to investigate the mechanisms of interactions of two diiron complexes, the diferrous [FeII2(H2Hbamb)2(NMI)2] and the mixed valent [FeII,FeIII(H2Hbamb)2]+, with either oxygen-atom donor (OAD) molecules or the mechanistic probe peroxide, 2-methyl-1-phenylprop-2-yl hydroperoxide (MPPH), and substrates containing weak C-H and O-H bonds. Single turnover studies with 9,10-dihydroanthracene (9,10-DHA) and the deuterated analog, d4-9,10-DHA allowed for the determination of kinetic isotope effects (KIE) which show an inverse KIE and evidence of a disproportionation mechanism. Previous investigations showed the rate of catalytic oxidation of cyclohexane to cyclohexanol by [FeII2(H2Hbamb)2(NMI)2] and MPPH decreased over time. Current VT-SF data show evidence of product inhibition by means of a pre-equilibrium process that inhibits the reaction of the oxidant with the [FeII,FeII] complex. Also examined is the ability of the [FeII,FeIII(H2Hbamb)2]+ complex to catalytically oxidize phenols to phenoxyl radicals via a putative [FeIV=O] species. The reactivity properties of substituted phenols that vary in their oxidation potentials and bond dissociation energies (BDE) was investigated by VT-SF electronic spectroscopic studies to gain insight into the mechanism of oxidation by the [FeII,FeIII] complex. Mechanistic studies were also performed utilizing a mononuclear non-heme iron complex [FeII(N2O1)(CH3OH)Cl2], which can bind alpha-keto acids (e.g. alpha-ketoglutarate, benzoylformate) in a bidentate fashion. Reactivity studies utilizing O2 shows coupled decarboxylation of the alpha-keto acid with catalytic oxidation of the methanol solvent formaldehyde (285 turnovers). In non-reactive solvents, the [FeII(N2O1)(alpha-KG)] adduct complex is capable of catalytically oxidizing a variety of substrates such as 9,10-dihydroanthracene, 2,4-di-tert-butyl phenol, cyclohexene, and cyclooctane at 25°C utilizing O2 as the oxidant. Investigations to the binding of alpha-keto acids to the mononuclear iron complex in the absence of O2 by VT-SF as well as binding studies with NO are discussed. Finally, VT-SF studies were performed to probe the reaction of O2 with [FeII(N2O1)(alpha-KG)(CH3OH)] and the proposed mechanism is discussed. The relevance of these data to non-heme iron enzymes like soluble Methane Monooxygenase, Ribonucleotide Reductase, and Taurine Dioxygenase is discussed.

Page generated in 0.0253 seconds