• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissipative Assembly of an Ion Transport System

Vu, Paul 02 January 2014 (has links)
This thesis describes the development of an ion channel system exhibiting dissipative assembly characteristics. In this system an active transporter based on an oligoester fragment terminated in a thioester of 6-aminohexanoic acid (HO2C-Hex-Adip-OctS-Hex-NH2) undergoes thioester cleavage to form a thiol terminated oligoester (HO2C-Hex-ADip-Oct-SH). This fragment was expected to be inactive for ion transport but previous work showed high activity in planar bilayer experiments. In this work, the high activity was shown to be due to the oxidized form of the thiol, the disulfide HO2C-ADip-Oct-SS-Oct-ADip-Hex-CO2H. Air oxidation was found to be quite rapid for the thiol based on ESI-MS (negative ion) and HPLC analysis. Under anaerobic conditions, the thiol fragment was an inactive species for ion transport. In situ air oxidation initiated transport activity associated with the disulfide. The transporter HO2C-Hex-Adip-Oct-Hex-NH2 was active in planar bilayer experiments and was compared to the disulfide via activity grids. The activity of these two compounds was shown to be distinct from each other by conductance and channel duration differences. The activity of HO2C-Hex-Adip-Oct-Hex-NH2 was shown to die off in a period of 30 minutes at pH 8.2. Techniques were developed to stimulate and monitor activity and bilayer quality so that an inactive condition could be confirmed. The addition of Pr-S-Hex-NH3+-Cl as a fuel was shown to extend the activity of HO2C-Hex-Adip-Oct-Hex-NH2 by eight-fold in 1M CsCl electrolyte. Previous work had established the capability of thioester exchange reactions by a reaction between Pr-S-Hex-NH3+-Cl and benzyl thiol in a homogenous solution. The extended activity indicated that the same process may occur in a heterogeneous bilayer system. An inactive system created by the die-off in activity of HO2C-Hex-Adip-Oct-S-Hex-NH2 was treated with Pr-S-Hex-NH3+-Cl to regenerate activity. This cycle could be repeated once the activity died off again. All these findings are consistent with the dissipative assembly of a membrane transport system. / Graduate / 0490
2

Biophysical studies of m2glyr modified sequences: The effect of electrostatics on ion channel selectivity

Bukovnik, Urska January 1900 (has links)
Doctor of Philosophy / Department of Biochemistry / John M. Tomich / Channel replacement therapy represents a new treatment modality that could augment existing therapies against cystic fibrosis. It is based on designing synthetic channel-forming peptides (CFPs) with desirable selectivity, high ion transport rates and overall ability to supersede defective endogenous chloride channels. We derived synthetic CFPs from a peptide initially reconstituted from the second transmembrane segment of the α-subunit of Glycine receptor (M2GlyR). Our best candidate peptide NK4-M2GlyR T19R, S22W (p22-T19R, S22W) is soluble in aqueous solutions, has the ability to deliver itself to the epithelial cell membranes without the use of a delivery system, is non-immunogenic, but when assembled into a pore, lacks the structural properties for anion selectivity. Previous findings suggested that threonine residues at positions 13, 17 and 20 line the pore of assembled p22-T19R, S22W and recent studies indicated that an introduction of positively charged 2, 3-diaminopropionic acid (Dap) at either T13 or T17 in the sequence increases transepithelial ion transport rates across the apical membranes of Madin-Darby canine kidney (MDCK) epithelial cells. This study focused on further structural modifications of the pore-lining interface of p22-T19R, S22W assembled pore. It was hypothesized that singly, doubly or triply introduced Dap residues modify the pore geometry and that their positively charged side chains impact discrimination for anions. Dap-substituted p22-T19R, S22W peptides retain the α-helical secondary structure characteristic for their parent p22-T19R, S22W. The sequences containing multiple Dap-substituted residues induce higher short circuit current across the epithelial MDCK cells compared to peptides with single Dap-substitutions or no Dap-substitutions. Whole-cell voltage clamp recordings using Xenopus oocytes indicate that Dap-substituted peptide assemblies induce higher levels of voltage-dependent but non-selective ion current relative to p22-T19R, S22W. Studies using the D-enantiomer of p22-T19R, S22W and shorter truncated sequences of a full length L-p22-T19R, S22W and L-Dap-substituted peptides provided evidence that peptide-induced ion transport rates can be attributed to formation of de novo pathways. Results of preliminary computer modeling studies indicate that Dap residues affect the pore geometry but not ion selectivity. Future studies focusing on modifying the existing electrostatic environment towards anion selectivity will focus on staggering the charged residues of Dap at various locations inside synthetic pores.

Page generated in 0.0653 seconds