Spelling suggestions: "subject:"duystème hamiltonian à por"" "subject:"duystème hamiltonian à post""
1 |
Passivity preserving balanced reduction for the finite and infinite dimensional port Hamiltonian systems / Réductions équilibrées des systèmes hamiltonien à port en dimension finie et infinie en préservant la passivitéWu, Yongxin 07 December 2015 (has links)
Dans ce mémoire nous avons développé des méthodes de réduction des systèmes hamiltoniens à port en dimension finie et infinie qui préservent leur structure. Dans la première partie, nous avons défini une représentation des systèmes hamiltoniens à port avec contraintes sous la forme d'équations différentielles algébriques (DEA) de type de système descripteur. De cette forme nous avons déduit une réalisation équilibrée du système hamiltonien à port exprimée sous forme de système descripteur contenant les mêmes systèmes d'équations de contrainte. Dans la deuxième partie, nous avons défini une classe de problèmes de commande LQG tels que le contrôleur dynamique LQG est passif et admet une réalisation hamiltonien à port. Deux méthodes de synthèse de commande passive LQG sont proposées et une de ces méthodes LQG nous a permis de définir une réalisation équilibrée LQG. Puis nous avons appliqué la méthode de contrainte de l'effort pour réduire le système hamiltonien à port et obtenir une commande LQG passive d'ordre réduit. Ce contrôleur LQG admettant une réalisation hamiltonienne, la structure hamiltonienne est préservée pour le système en boucle fermée par interconnexion de systèmes hamiltoniens à port. Dans la troisième partie, nous avons généralisé les résultats précédents aux systèmes hamiltoniens à ports linéaires de dimension infinie. Pour cela nous avons considéré une classe de systèmes hamiltoniens à ports de dimension infinie dont l'opérateur d'entrée est borné et un problème de commande LQG passif. Sous des conditions de nucléarité de l'opérateur de Hankel lié au problème LQG, nous définissons une réalisation équilibrée LQG passive du système et une approximation en dimension finie. Le contrôleur LQG passif d'ordre réduit obtenu par cette approximation admet une réalisation hamiltonienne à port et par conséquent la structure hamiltonienne et la passivité sont préservées en boucle fermée / In this thesis we have developed different structure preserving reduction methods for finite and infinite dimensional port Hamiltonian systems by using a balanced model reduction approach. In the first part we have defined a descriptor representation of port Hamiltonian systems with constraints. The balanced realization of the descriptor system has been used for reducing the port Hamiltonian descriptor system and conserving explicitly the constraint equations. In the second part, conditions have been derived on the weighting matrices of the LQG control problem such that the dynamical LQG controller is passive and has a port Hamiltonian realization. Two passive LQG control design methods have been suggested and one of them allows us to define a LQG balanced realization. Based on this realization, the effort constraint method has been used to reduce the LQG balanced port Hamiltonian system and obtain a reduced order passive LQG controller. In this way the closed-loop system is derived from the interconnection of 2 port Hamiltonian systems, hence the Hamiltonian structure has been preserved. In the third part, the proceeding results have been extended to a class of infinite dimensional port Hamiltonian system with bounded input operator. A passive LQG control design method for infinite dimensional port Hamiltonian system has been derived as by Control by Interconnection (CbI). Based on the balanced realization associated with this passive LQG control design, a finite dimensional approximation has been achieved and a reduced order passive LQG controller has been derived. As a consequence, the system in closed-loop with this reduced order LQG controller again admits a port Hamiltonian structure and satisfies the passivity
|
2 |
Approche thermodynamique pour la commande d’un système non linéaire de dimension infinie : application aux réacteurs tubulaires / Thermodynamic approach for the control of a non-linear infinite-dimensional system : application to tubular reactorsZhou, Weijun 22 June 2015 (has links)
Le travail présenté dans cette thèse porte sur la modélisation et la commande d'un système thermodynamique non linéaire de dimension infinie, le réacteur tubulaire. Nous abordons le problème de commande sur ce système non linéaire en nous appuyant sur les propriétés thermodynamiques du procédé. Cette approche nécessite l'utilisation d'un modèle ayant comme variables d'état les variables extensives thermodynamiques classiques. Nous utilisons la fonction de disponibilité thermodynamique ainsi qu'une autre fonction déduite de la précédente, la disponibilité réduite, comme fonction de Lyapunov candidate pour résoudre le problème de stabilisation du réacteur autour d'un profil d'équilibre en utilisant comme commande distribuée la température de la double enveloppe. Des simulations illustrent ces résultats ainsi que l'efficacité des commandes en présence de perturbations. Nous nous intéressons aussi à la représentation hamiltonienne à port des systèmes irréversibles de dimension infinie. La structure de Stokes-Dirac pour un modèle réaction diffusion est obtenue en étendant les vecteurs de variables de flux et d'effort. Nous présentons cette démarche pour les équations du système réaction-diffusion en prenant premièrement l'énergie interne comme Hamiltonien puis deuxièmement l'opposé de l'entropie. Nous montrons dans les deux cas qu'en utilisant une extension des couples de variables effort-flux thermodynamiques classiques nous obtenons une structure de Stokes-Dirac. Enfin nous donnons quelques résultats aboutissant à une représentation pseudo hamiltonienne. Enfin nous abordons le problème de commande à la frontière. L'objectif est d'étudier l'existence de solutions associées à un modèle linéarisé de réacteur tubulaire complet commandé à la frontière / The main objective of this thesis consists to investigate the problem of modelling and control of a nonlinear parameter distributed thermodynamic system : the tubular reactor. We address the control problem of this non linear system relying on the thermodynamic properties of the process. This approach requires to use the classical extensive variables as the state variables. We use the thermodynamic availability as well as the reduced thermodynamic availability (this function is formed from some terms of the thermodynamic availabilty) as Lyapunov functions in order to asymptotically stabilize the tubular reactor aroud a steady profile. The distributed temperature of the jacket is the control variable. Some simulations illustrate these results as well as the eficiency of the control in presence of perturbations. Next we study the Port Hamiltonian representation of irreversible infinite dimensional systems. We propose a Stokes-Dirac structure of a reaction-diffusion system by means of the extension of the vectors of the flux and effort variables. We illustrate this approach on the example of the reaction-diffusion system. For this latter we use the internal energy as well as the opposite of the entropy to obtain Stokes-Dirac structures. We propose also a pseudo-Hamiltonian representation for the two Hamiltonians. Finally we tackle the boundary control problem. The objective is to study the existence of solutions associated to a linearized model of the tubular reactor controlled to the boundary
|
Page generated in 0.0993 seconds