• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport coopératif d'un objet par deux robots humanoïdes dans un environnement encombré

Rioux, Antoine January 2016 (has links)
Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot.
2

Contributions à la planification et à la commande pour les robots mobiles coopératifs

Defoort, Michael 22 October 2007 (has links) (PDF)
Ce travail se place dans le cadre de la navigation autonome d'une flottille de robots mobiles non holonomes. Notre objectif est de doter un système multi-robots à la fois d'une architecture de planification de trajectoire flexible et d'une architecture de poursuite de trajectoire performante et robuste.<br />Le premier chapitre est consacré à la présentation du contexte.<br />Le deuxième chapitre est dévolu au développement d'un algorithme de planification de trajectoire admissible pour un robot mobile suffisamment flexible pour pouvoir être étendu au cadre multi-robots.<br />Dans le troisième chapitre, deux mécanismes de coordination sont développés. Pour le premier, les conflits sont résolus via un superviseur. Le second permet la génération en ligne des trajectoires optimales de chaque robot de manière décentralisée à partir uniquement des informations disponibles.<br />Le quatrième chapitre concerne la commande par modes glissants d'ordre quelconque. L'efficacité de l'algorithme est mise en lumière à travers des résultats expérimentaux sur un moteur pas à pas.<br />Dans le cinquième chapitre, deux algorithmes de commande par modes glissants avec action intégrale sont synthétisés et implémentés sur le robot Pekee. Ces techniques assurent la stabilisation et/ou le suivi de trajectoire malgré la présence de perturbations et d'incertitudes.<br />Le dernier chapitre décrit un mécanisme décentralisé de coordination de type ``meneur/suiveur''. Il permet de s'affranchir de la connaissance de la position absolue de l'ensemble des robots et d'éviter les collisions entre robots. Enfin, nous présentons des résultats expérimentaux sur une flottille de trois robots Miabot.
3

Apport du couplage entre dynamique d’apprentissage et propriétés collectives dans l’optimisation multi-contraintes par un système multi-agents et multi-robots / Contribution of the coupling between dynamic learning and collective properties in a multi-constraints optimizations by a multi-agent system and multi-robots

Chatty, Abdelhak 30 June 2014 (has links)
Dans ce travail, nous proposons un système auto-organisé composé d'agents-robots contrôlés par une architecture de subsomption et des règles locales probabilistes de prises et de dépôts. Ces agents-robots sont capables, grâce au développement de leurs capacités cognitives de se créer une carte cognitive, d'apprendre plusieurs lieux buts et de planifier le retour vers ces buts. Bien que formellement l'algorithme ne permette pas à chaque agent de "mélanger ni de fusionner ou d'optimiser" plusieurs objectifs, nous montrerons que le système global est capable de réaliser une optimisation multi-objectifs. Particulièrement, la fusion de l'apprentissage local avec l'accumulation de décisions individuelles permet de faire émerger (i) des structures dans l'environnement et (ii) des dynamiques tel que le comportement de spécialisation ou les comportements que nous pouvons considérer comme étant "égoïstes" ou "altruistes". Nous montrons qu'un mécanisme d'imitation simple contribue à l'amélioration des performance de notre SMAC et de notre SMRC, à savoir l'optimisation de la durée pour découvrir des différentes ressources, le temps moyen de planification, le niveau global de satisfaction des agents et enfin le temps moyen de convergence vers une solution stable. Particulièrement, l'ajout d'une capacité d'imitation améliore la construction des cartes cognitives pour chaque agent et stimule le partage implicite des informations dans un environnement a priori inconnu. En effet, les découvertes individuelles peuvent avoir un effet au plan social et donc inclure l'apprentissage de nouveaux comportements au niveau individuel. Pour finir, nous comparons les propriétés émergentes de notre SMAC à un modèle mathématique basé sur la programmation linéaire (PL). Cette évaluation montre les bonnes performances de notre SMAC qui permet d'avoir des solutions proches des solutions de la PL pour un coût de calcul réduit. Dans une dernière série d'expériences, nous étudions notre système d'agrégation dans un environnement réel. Nous mettons en place un SMRC, composé par des robots qui sont capables d'effectuer les opérations de prise, de dépôt et de maintien. Nous montrons via les premiers tests d'agrégation que les résultats sont prometteurs. / In this work, we propose a self-organized system composed by agents-robots, controlled by a subsumption architecture with probabilistic local rules of deposits and taking. These agents-robots are able, thanks to the development of their cognitive abilities to create a cognitive map, to learn various goals' locations and to plan the return to these goals. Although formally the algorithm does not allow each agent to « mix or merge or optimize » several objectives, we show that the overall system is able to perform a multi-objective optimization. Specifically, the fusion of local learning with the accumulation of the individual decisions allows to emerge (i) structures in the environment and (ii) several dynamics such as specialization behavior or those that we can consider as « selfish » or « altruistic ». We show that the imitation strategy contributes to the improvement of the performance of our SMAC and our SMRC, namely the optimization of time to explore the various resources, the average planning time, the overall satisfaction level of agents and finally the the average time of convergence to a stable solution. Specifically, the addition of an imitation ability improves the construction of cognitive maps for each agent and stimulates the implicit sharing of informations in an unknown environment. Indeed, individual discoveries can affect the social level and therefore include learning new behaviors at the individual level. Finally, we compare the emergent properties of our SMAC with a mathematical model based on linear programming (LP). This evaluation shows the good performance of our SMAC which allows to obtain solutions close to the solution of the PL for a low cost of computation. In a final series of experiments, we study our aggregation system in a real environment. We set up a SMRC, composed by robots that are able to perform taking operations, deposits operations and refueling operations. We show through the first tests of aggregation that the results are promising.

Page generated in 0.0398 seconds