Spelling suggestions: "subject:"asystèmes dde dialogue parle"" "subject:"asystèmes dde dialogue parar""
1 |
Revisiting user simulation in dialogue systems : do we still need them ? : will imitation play the role of simulation ? / Revisiter la simulation d'utilisateurs dans les systèmes de dialogue parlé : est-elle encore nécessaire ? : est-ce que l'imitation peut jouer le rôle de la simulation ?Chandramohan, Senthilkumar 25 September 2012 (has links)
Les récents progrès dans le domaine du traitement du langage ont apporté un intérêt significatif à la mise en oeuvre de systèmes de dialogue parlé. Ces derniers sont des interfaces utilisant le langage naturel comme medium d'interaction entre le système et l'utilisateur. Le module de gestion de dialogue choisit le moment auquel l'information qu'il choisit doit être échangée avec l'utilisateur. Ces dernières années, l'optimisation de dialogue parlé en utilisant l'apprentissage par renforcement est devenue la référence. Cependant, une grande partie des algorithmes utilisés nécessite une importante quantité de données pour être efficace. Pour gérer ce problème, des simulations d'utilisateurs ont été introduites. Cependant, ces modèles introduisent des erreurs. Par un choix judicieux d'algorithmes, la quantité de données d'entraînement peut être réduite et ainsi la modélisation de l'utilisateur évitée. Ces travaux concernent une partie des contributions présentées. L'autre partie des travaux consiste à proposer une modélisation à partir de données réelles des utilisateurs au moyen de l'apprentissage par renforcement inverse / Recent advancements in the area of spoken language processing and the wide acceptance of portable devices, have attracted signicant interest in spoken dialogue systems.These conversational systems are man-machine interfaces which use natural language (speech) as the medium of interaction.In order to conduct dialogues, computers must have the ability to decide when and what information has to be exchanged with the users. The dialogue management module is responsible to make these decisions so that the intended task (such as ticket booking or appointment scheduling) can be achieved.Thus learning a good strategy for dialogue management is a critical task.In recent years reinforcement learning-based dialogue management optimization has evolved to be the state-of-the-art. A majority of the algorithms used for this purpose needs vast amounts of training data.However, data generation in the dialogue domain is an expensive and time consuming process. In order to cope with this and also to evaluatethe learnt dialogue strategies, user modelling in dialogue systems was introduced. These models simulate real users in order to generate synthetic data.Being computational models, they introduce some degree of modelling errors. In spite of this, system designers are forced to employ user models due to the data requirement of conventional reinforcement learning algorithms can learn optimal dialogue strategies from limited amount of training data when compared to the conventional algorithms. As a consequence of this, user models are no longer required for the purpose of optimization, yet they continue to provide a fast and easy means for quantifying the quality of dialogue strategies. Since existing methods for user modelling are relatively less realistic compared to real user behaviors, the focus is shifted towards user modelling by means of inverse reinforcement learning. Using experimental results, the proposed method's ability to learn a computational models with real user like qualities is showcased as part of this work.
|
Page generated in 0.0592 seconds