Spelling suggestions: "subject:"asystèmes pointshell"" "subject:"asystèmes point.all""
1 |
Fast nonlinear solvers in solid mechanics / Solveurs non linéaires rapides en mécanique des solidesMercier, Sylvain 31 October 2015 (has links)
La thèse a pour objectif le développement de méthodes performantes pour la résolution de problèmes non linéaires ne mécanique des solides. Il est coutume d'utiliser une méthode de type Newton qui conduit à la résolution d'une séquence de systèmes linéaires. De plus, la prise en compte des relations linéaires imposées à l'aide de multiplicateurs de Lagrange confère aux matrices une structure de point-selle. Dans un cadre plus général, nous proposons, étudions et illustrons deux classes d'enrichissement de préconditionneurs (limited memory preconditioners) pour la résolution de séquences de systèmes linéaires par une méthode de Krylov. La première est un extension au cas symétrique indéfini d'une méthode existante, développée initialement dans le cadre symétrique défini positif. La seconde est plus générale dans le sens où elle s'applique aus systèmes non symétriques. Ces deux familles peuvent être interprétées comme des variantes par blocs de formules de mise à jour utilisées dans différentes méthodes d'optimisation. Ces techniques ont été développées dans le logiciel de mécanique des solides Code_Aster (dans un environnement parallèle distribué via la bibliothèque PETSc) et sont illustrées sur plusieurs études industrielles. Les gains obtenus en terme de coût de calcul sont significatifs (jusqu'à 50%), pour un surcoût mémoire négligeable. / The thesis aims at developing efficient numerical methods to solve nonlinear problems arising un solid mechanics. In this field, Newton methods are currently used, requiring the solution of a sequence of linear systems. Furthermore, the imposed linear relations are dualized with the Lagrange multipliers, leading to matrices with a saddle point structure. In a more general framework, we propose two classes of preconditioners (named limited memory preconditioners) to solve sequences of linear systems with a Krylov subspace method. The first class is based on an extension of a method initially developed for symmetric positive definite matrices to the symmetric indefinite case. Both families can be interpreted as block variants of updating formulas used in numerical optimization. They have been implemented into the Code_Aster solid mechanics software (in a parallel distributed environement using the PETSc library). These new preconditioning strategies are illustrated on several industrial applications. We obtain significant gains in computational cost (up to 50%) at a marginal overcost in memory.
|
2 |
Solveurs performants pour l'optimisation sous contraintes en identification de paramètres / Efficient solvers for constrained optimization in parameter identification problemsNifa, Naoufal 24 November 2017 (has links)
Cette thèse vise à concevoir des solveurs efficaces pour résoudre des systèmes linéaires, résultant des problèmes d'optimisation sous contraintes dans certaines applications de dynamique des structures et vibration (la corrélation calcul-essai, la localisation d'erreur, le modèle hybride, l'évaluation des dommages, etc.). Ces applications reposent sur la résolution de problèmes inverses, exprimés sous la forme de la minimisation d'une fonctionnelle en énergie. Cette fonctionnelle implique à la fois, des données issues d'un modèle numérique éléments finis, et des essais expérimentaux. Ceci conduit à des modèles de haute qualité, mais les systèmes linéaires point-selle associés, sont coûteux à résoudre. Nous proposons deux classes différentes de méthodes pour traiter le système. La première classe repose sur une méthode de factorisation directe profitant de la topologie et des propriétés spéciales de la matrice point-selle. Après une première renumérotation pour regrouper les pivots en blocs d'ordre 2. L'élimination de Gauss est conduite à partir de ces pivots et en utilisant un ordre spécial d'élimination réduisant le remplissage. Les résultats numériques confirment des gains significatifs en terme de remplissage, jusqu'à deux fois meilleurs que la littérature pour la topologie étudiée. La seconde classe de solveurs propose une approche à double projection du système étudié sur le noyau des contraintes, en faisant une distinction entre les contraintes cinématiques et celles reliées aux capteurs sur la structure. La première projection est explicite en utilisant une base creuse du noyau. La deuxième est implicite. Elle est basée sur l'emploi d'un préconditionneur contraint avec des méthodes itératives de type Krylov. Différentes approximations des blocs du préconditionneur sont proposées. L'approche est implémentée dans un environnement distribué parallèle utilisant la bibliothèque PETSc. Des gains significatifs en terme de coût de calcul et de mémoire sont illustrés sur plusieurs applications industrielles. / This thesis aims at designing efficient numerical solution methods to solve linear systems, arising in constrained optimization problems in some structural dynamics and vibration applications (test-analysis correlation, model error localization,hybrid model, damage assessment, etc.). These applications rely on solving inverse problems, by means of minimization of an energy-based functional. This latter involves both data from a numerical finite element model and from experimental tests, which leads to high quality models, but the associated linear systems, that have a saddle-point coefficient matrices, are long and costly to solve. We propose two different classes of methods to deal with these problems. First, a direct factorization method that takes advantage of the special structures and properties of these saddle point matrices. The Gaussian elimination factorization is implemented in order to factorize the saddle point matrices block-wise with small blocks of orders 2 and using a fill-in reducing topological ordering. We obtain significant gains in memory cost (up to 50%) due to enhanced factors sparsity in comparison to literature. The second class is based on a double projection of the generated saddle point system onto the nullspace of the constraints. The first projection onto the kinematic constraints is proposed as an explicit process through the computation of a sparse null basis. Then, we detail the application of a constraint preconditioner within a Krylov subspace solver, as an implicit second projection of the system onto the nullspace of the sensors constraints. We further present and compare different approximations of the constraint preconditioner. The approach is implemented in a parallel distributed environment using the PETSc library. Significant gains in computational cost and memory are illustrated on several industrial applications.
|
Page generated in 0.0372 seconds