Spelling suggestions: "subject:"asystèmes substitutif"" "subject:"asystèmes substitution""
1 |
Déviation des moyennes ergodiques / Deviation of ergodic averagesGonzález Villanueva, José Luis 04 July 2014 (has links)
Ce travail étudie les déviations de sommes ergodiques pour des systèmes dynamiques substitutifs avec une matrice qui admet des valeurs propres de module supérieur à 1. Précisément, nous nous concentrons sur les substitutions telle que ces valeurs propres ne sont pas conjuguées. Dans un premier temps, on défini les lettres a-minimales et dominantes d'un mot pour étudier sa ligne brisée associé. On défini la ligne brisée normalisée et sa fonction limite. Pour l'étude des sommes ergodiques, on défini le sous-automate des lettres minimales. On donne des conditions sur une substitution de sorte qu'il y ait un nombre infini des sommes ergodiques égales à zéro pour un point x 2 X. Enfin, en utilisant un boucle dans une classe de Rauzy, on prouve l'existence d'un nombre infini d'échanges d'intervalles auto-similaires, dont la matrice de Rauzy a deux valeurs propres non conjuguées de module supérieur à 1. Et tout échange d'intervalles affine semi-conjugué à cet échange d'intervalles est aussi conjugué. / This thesis focuses on the deviation of ergodic sums for a substitution dynamical systems with a matrix that admits eigenvalues of modulus larger than 1. Specifically, we concentrate on substitutions with non-conjugated eigenvalues. At first, we define the a-minimals letters and the dominant letters of a word to study its broken associated line. We define the normalize broken line and its limit function. For the study of ergodic sums, we define the sub-automaton of minimum letters. We give conditions on a substitution so that there is infinitely many zero sums ergodic for a point x 2 X. Finally, using a loop in a class of Rauzy, we prove the existence of infinitely many interval exchange transformation self-similar, whose Rauzy matrix has two non-conjugated eigenvalues larger than 1 and every affine interval exchange transformation that is semi-conjugated, is also conjugated.
|
Page generated in 0.0699 seconds