• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • Tagged with
  • 303
  • 303
  • 303
  • 32
  • 28
  • 26
  • 20
  • 18
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effectiveness of Vibration-based Haptic Feedback Effects for 3D Object Manipulation

Renwick, Kyle January 2008 (has links)
This research explores the development of vibration-based haptic feedback for a mouse-like computer input device. The haptic feedback is intended to be used in 3D virtual environments to provide users of the environment with information that is difficult to convey visually, such as collisions between objects. Previous research into vibrotactile haptic feedback can generally be split into two broad categories: single tactor handheld devices; and multiple tactor devices that are attached to the body. This research details the development of a vibrotactile feedback device that merges the two categories, creating a handheld device with multiple tactors. Building on previous research, a prototype device was developed. The device consisted of a semi-sphere with a radius of 34 mm, mounted on a PVC disk with a radius of 34 mm and a height of 18 mm. Four tactors were placed equidistantly about the equator of the PVC disk. Unfortunately, vibrations from a single tactor caused the entire device to shake due to the rigid plastic housing for the tactors. This made it difficult to accurately detect which tactor was vibrating. A second prototype was therefore developed with tactors attached to elastic bands. When a tactor vibrates, the elastic bands dampen the vibration, reducing the vibration in the rest of the device. The goal of the second prototype was to increase the accuracy in localizing the vibrating tactor. An experiment was performed to compare the two devices. The study participants grasped one of the device prototypes as they would hold a computer mouse. During each trial, a random tactor would vibrate. By pushing a key on the keyboard, the participants indicated when they detected vibration. They then pushed another key to indicate which tactor had been vibrating. The procedure was then repeated for the other device. Detection of the vibration was faster (p < 0.01) and more accurate (p < 0.001) with the soft shell design than with the hard shell design. In a post-experiment questionnaire, participants preferred the soft shell design to the hard shell design. Based on the results of the experiment, a mould was created for building future prototypes. The mould allows for the rapid creation of devices from silicone. Silicone was chosen as a material because it can easily be moulded and is available in different levels of hardness. The hardness of the silicone can be used to control the amount of damping of the vibrations. To increase the vibration damping, a softer silicone can be used. Several recommendations for future prototypes and experiments are made.
22

Reinforced Segmentation of Images Containing One Object of Interest

Sahba, Farhang 05 October 2007 (has links)
In many image-processing applications, one object of interest must be segmented. The techniques used for segmentation vary depending on the particular situation and the specifications of the problem at hand. In methods that rely on a learning process, the lack of a sufficient number of training samples is usually an obstacle, especially when the samples need to be manually prepared by an expert. The performance of some other methods may suffer from frequent user interactions to determine the critical segmentation parameters. Also, none of the existing approaches use online (permanent) feedback, from the user, in order to evaluate the generated results. Considering the above factors, a new multi-stage image segmentation system, based on Reinforcement Learning (RL) is introduced as the main contribution of this research. In this system, the RL agent takes specific actions, such as changing the tasks parameters, to modify the quality of the segmented image. The approach starts with a limited number of training samples and improves its performance in the course of time. In this system, the expert knowledge is continuously incorporated to increase the segmentation capabilities of the method. Learning occurs based on interactions with an offline simulation environment, and later online through interactions with the user. The offline mode is performed using a limited number of manually segmented samples, to provide the segmentation agent with basic information about the application domain. After this mode, the agent can choose the appropriate parameter values for different processing tasks, based on its accumulated knowledge. The online mode, consequently, guarantees that the system is continuously training and can increase its accuracy, the more the user works with it. During this mode, the agent captures the user preferences and learns how it must change the segmentation parameters, so that the best result is achieved. By using these two learning modes, the RL agent allows us to optimally recognize the decisive parameters for the entire segmentation process.
23

Vehicle Tracking in Occlusion and Clutter

McBride, Kurtis January 2007 (has links)
Vehicle tracking in environments containing occlusion and clutter is an active research area. The problem of tracking vehicles through such environments presents a variety of challenges. These challenges include vehicle track initialization, tracking an unknown number of targets and the variations in real-world lighting, scene conditions and camera vantage. Scene clutter and target occlusion present additional challenges. A stochastic framework is proposed which allows for vehicles tracks to be identified from a sequence of images. The work focuses on the identification of vehicle tracks present in transportation scenes, namely, vehicle movements at intersections. The framework combines background subtraction and motion history based approaches to deal with the segmentation problem. The tracking problem is solved using a Monte Carlo Markov Chain Data Association (MCMCDA) method. The method includes a novel concept of including the notion of discrete, independent regions in the MCMC scoring function. Results are presented which show that the framework is capable of tracking vehicles in scenes containing multiple vehicles that occlude one another, and that are occluded by foreground scene objects.
24

Effectiveness of Vibration-based Haptic Feedback Effects for 3D Object Manipulation

Renwick, Kyle January 2008 (has links)
This research explores the development of vibration-based haptic feedback for a mouse-like computer input device. The haptic feedback is intended to be used in 3D virtual environments to provide users of the environment with information that is difficult to convey visually, such as collisions between objects. Previous research into vibrotactile haptic feedback can generally be split into two broad categories: single tactor handheld devices; and multiple tactor devices that are attached to the body. This research details the development of a vibrotactile feedback device that merges the two categories, creating a handheld device with multiple tactors. Building on previous research, a prototype device was developed. The device consisted of a semi-sphere with a radius of 34 mm, mounted on a PVC disk with a radius of 34 mm and a height of 18 mm. Four tactors were placed equidistantly about the equator of the PVC disk. Unfortunately, vibrations from a single tactor caused the entire device to shake due to the rigid plastic housing for the tactors. This made it difficult to accurately detect which tactor was vibrating. A second prototype was therefore developed with tactors attached to elastic bands. When a tactor vibrates, the elastic bands dampen the vibration, reducing the vibration in the rest of the device. The goal of the second prototype was to increase the accuracy in localizing the vibrating tactor. An experiment was performed to compare the two devices. The study participants grasped one of the device prototypes as they would hold a computer mouse. During each trial, a random tactor would vibrate. By pushing a key on the keyboard, the participants indicated when they detected vibration. They then pushed another key to indicate which tactor had been vibrating. The procedure was then repeated for the other device. Detection of the vibration was faster (p < 0.01) and more accurate (p < 0.001) with the soft shell design than with the hard shell design. In a post-experiment questionnaire, participants preferred the soft shell design to the hard shell design. Based on the results of the experiment, a mould was created for building future prototypes. The mould allows for the rapid creation of devices from silicone. Silicone was chosen as a material because it can easily be moulded and is available in different levels of hardness. The hardness of the silicone can be used to control the amount of damping of the vibrations. To increase the vibration damping, a softer silicone can be used. Several recommendations for future prototypes and experiments are made.
25

The Design, Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers for Imaging Applications

Logan, Andrew Stephan 29 September 2010 (has links)
Capacitive micromachined ultrasonic transducers (CMUTs) have proven themselves to be excellent candidates for medical ultrasonic imaging applications. The use of semiconductor fabrication techniques facilitates the fabrication of high quality arrays of uniform cells and elements, broad acoustic bandwidth, the potential to integrate the transducers with the necessary electronics, and the opportunity to exploit the benefits of batch fabrication. In this thesis, the design, fabrication and testing of one- and two-dimensional CMUT arrays using a novel wafer bonding process whereby the membrane and the insulation layer are both silicon nitride is reported. A user-grown insulating membrane layer avoids the need for expensive SOI wafers, permits optimization of the electrode size, and allows more freedom in selecting the membrane thickness, while also enjoying the benefits of wafer bonding fabrication. Using a row-column addressing scheme for an NxN two-dimensional array permits three-dimensional imaging with a large reduction in the complexity of the array when compared to a conventional 2D array with connections to all N2 elements. Only 2N connections are required and the image acquisition rate has the potential to be greatly increased. A simplification of the device at the imaging end will facilitate the integration of a three-dimensional imaging CMUT array into either an endoscope or catheter which is the ultimate purpose of this research project. To date, many sizes of transducers which operate at different frequencies have been successfully fabricated. Initial characterization in terms of resonant frequency and, transmission and reception in immersion has been performed on most of the device types. Extensive characterization has been performed with a linear 32 element array transducer and a 32x32 element row-column transducer. Two- and three-dimensional phased array imaging has been demonstrated.
26

The Design, Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers for Imaging Applications

Logan, Andrew Stephan 29 September 2010 (has links)
Capacitive micromachined ultrasonic transducers (CMUTs) have proven themselves to be excellent candidates for medical ultrasonic imaging applications. The use of semiconductor fabrication techniques facilitates the fabrication of high quality arrays of uniform cells and elements, broad acoustic bandwidth, the potential to integrate the transducers with the necessary electronics, and the opportunity to exploit the benefits of batch fabrication. In this thesis, the design, fabrication and testing of one- and two-dimensional CMUT arrays using a novel wafer bonding process whereby the membrane and the insulation layer are both silicon nitride is reported. A user-grown insulating membrane layer avoids the need for expensive SOI wafers, permits optimization of the electrode size, and allows more freedom in selecting the membrane thickness, while also enjoying the benefits of wafer bonding fabrication. Using a row-column addressing scheme for an NxN two-dimensional array permits three-dimensional imaging with a large reduction in the complexity of the array when compared to a conventional 2D array with connections to all N2 elements. Only 2N connections are required and the image acquisition rate has the potential to be greatly increased. A simplification of the device at the imaging end will facilitate the integration of a three-dimensional imaging CMUT array into either an endoscope or catheter which is the ultimate purpose of this research project. To date, many sizes of transducers which operate at different frequencies have been successfully fabricated. Initial characterization in terms of resonant frequency and, transmission and reception in immersion has been performed on most of the device types. Extensive characterization has been performed with a linear 32 element array transducer and a 32x32 element row-column transducer. Two- and three-dimensional phased array imaging has been demonstrated.
27

MEMS Demodulator Based on Electrostatic Actuator

Chung, So-Ra (Serena) 29 October 2012 (has links)
This thesis provides analysis and modeling for one of the Micro-Eletro-Mechanical System (MEMS) electrostatic actuator that consists of a micro-plate at the end of a cantilever beam, and introduces different type of MEMS electrostatic actuator; a paddle structure, which is a micro-plate suspended by two cantilever beams on each side. An electrode plate is placed right under the micro-plate to apply an actuation voltage. A step-by-step analysis explains how to obtain each parameter used for the simulations. Static and dynamic models are presented with governing equations for the paddle-shaped MEMS electrostatic actuator. The key findings are that the proposed electrostatic MEMS demodulator architecture taking advantage of the resonance circuit principle not only theoretically work in analytical model, and numerical simulations, but also work in real life. For the Amplitude Modulations (AM) demodulations, simulations with various damping factors are provided, and experimental data are discussed. By measuring the displacement using the phase detector circuit and vibrometer, as a proof of versatility of the demodulation architecture based on the MEMS electrostatic actuator, the results from Frequency Modulations (FM), Amplitude Shift Keying (ASK), and Frequency Shift Keying (FSK) demodulation scheme experiments that are conducted with the physically identical dimensions and configuration are provided. The future plan for further analysis and experiment is discussed at the end.
28

High-Level Intuitive Features (HLIFs) for Melanoma Detection

Amelard, Robert January 2013 (has links)
Feature extraction of segmented skin lesions is a pivotal step for implementing accurate decision support systems. Existing feature sets combine many ad-hoc calculations and are unable to easily provide intuitive diagnostic reasoning. This thesis presents the design and evaluation of a set of features for objectively detecting melanoma in an intuitive and accurate manner. We call these "high-level intuitive features" (HLIFs). The current clinical standard for detecting melanoma, the deadliest form of skin cancer, is visual inspection of the skin's surface. A widely adopted rule for detecting melanoma is the "ABCD" rule, whereby the doctor identifies the presence of Asymmetry, Border irregularity, Colour patterns, and Diameter. The adoption of specialized medical devices for this cause is extremely slow due to the added temporal and financial burden. Therefore, recent research efforts have focused on detection support systems that analyse images acquired with standard consumer-grade camera images of skin lesions. The central benefit of these systems is the provision of technology with low barriers to adoption. Recently proposed skin lesion feature sets have been large sets of low-level features attempting to model the widely adopted ABCD criteria of melanoma. These result in high-dimensional feature spaces, which are computationally expensive and sparse due to the lack of available clinical data. It is difficult to convey diagnostic rationale using these feature sets due to their inherent ad-hoc mathematical nature. This thesis presents and applies a generic framework for designing HLIFs for decision support systems relying on intuitive observations. By definition, a HLIF is designed explicitly to model a human-observable characteristic such that the feature score can be intuited by the user. Thus, along with the classification label, visual rationale can be provided to further support the prediction. This thesis applies the HLIF framework to design 10 HLIFs for skin cancer detection, following the ABCD rule. That is, HLIFs modeling asymmetry, border irregularity, and colour patterns are presented. This thesis evaluates the effectiveness of HLIFs in a standard classification setting. Using publicly-available images obtained in unconstrained environments, the set of HLIFs is compared with and against a recently published low-level feature set. Since the focus is on evaluating the features, illumination correction and manually-defined segmentations are used, along with a linear classification scheme. The promising results indicate that HLIFs capture more relevant information than low-level features, and that concatenating the HLIFs to the low-level feature set results in improved accuracy metrics. Visual intuitive information is provided to indicate the ability of providing intuitive diagnostic reasoning to the user.
29

Multi-Body Vehicle Dynamics Modeling for Drift Analysis

Loh, Francis January 2013 (has links)
One area of vehicle handling performance that has been the focus of an OEM{'}s (Original Equipment Manufacturer) engineering effort is within the realm of vehicle straight-line performance. As the name implies, straight-line performance is determinant on the vehicle{'}s tendency to resist vehicle lateral drift when being driven straight. Vehicle lateral drift is a condition where the driver must apply a constant correctional torque to the steering wheel in order to maintain a straight line course. A full vehicle model was developed to simulate the influences of suspension parameters on vehicle drift. Adams 2010 was chosen as the multi-body dynamics (MBD) software for this research for its ability to develop a full vehicle high fidelity model without the need for physical test data. The model was created from standard Adams/Car suspension templates modified to accommodate the subject vehicle. The front suspension sub-assembly model was built upon the front MacPherson strut suspension template. Likewise, the rear suspension sub-assembly model was created from the rear multi-link suspension template. The tire model used in the full vehicle model was based on the Pacejka 2002 formulation. A model of a similar tire was generated using a custom spreadsheet based on the PAC2002, a slightly modified version of the Pacejka 2002 formulation found within Adams/Car. A virtual tire test rig and a 6/7-DoF model were created to understand and verify the behaviour of the generated tire models. The virtual tire test rig was used to compare the outputs of the PAC2002 tire model to the calculated values from a custom tire property spreadsheet. The 6/7-DoF model was used to test and verify the effect of the tire{’}s residual lateral forces. The full-vehicle model was verified using the parallel wheel travel and opposite wheel travel suspension analyses. The parallel wheel travel analysis was used to tease out binding issues within the designed travel of the suspension. The opposite wheel travel analysis was used similarly for anti-roll bar systems. Simulations based on the industry standard vehicle drift tests were run to understand the effect of certain vehicle suspension geometry on vehicle drift, namely the vehicle{’}s front and rear camber and toe angles. The full-vehicle model was also subjected to straight-line performance simulations with various road bank or crown angles. The results were compared with industry-standard vehicle drift test data gathered by the OEM on their own test track. The results indicate that the direction of vehicle pull matches with the OEM test data, but the magnitudes differ in both the positively and negatively banked road simulation results. It is likely that the difference in vehicle drift is due to the lack of steering data obtained for the full-vehicle model.
30

Dynamics and Control of a Piano Action Mechanism

Izadbakhsh, Adel January 2006 (has links)
The piano action is the mechanism that transforms the finger force applied to a key into the motion of a hammer that strikes a piano string. This thesis focuses on improving the fidelity of the dynamic model of a grand piano action which has been already developed by Hirschkorn et al. at the University of Waterloo. This model is the state-of-the-art dynamic model of the piano in the literature and is based on the real components of the piano action mechanism (key, whippen, jack, repetition lever, and hammer). Two main areas for improving the fidelity of the dynamic model are the hammer shank and the connection point between the key and the ground. The hammer shank is a long narrow wooden rod and, by observation with a high-speed video camera, the flexibility of this part has been confirmed. In previous work, the piano hammer had been modelled as a rigid body. In this work, a Rayleigh beam model is used to model the flexible behaviour of the hammer shank. By comparing the experimental and analytical results, it turns out that the flexibility of the hammer shank does not significantly affect the rotation of the other parts of the piano mechanism, compared with the case that the hammer shank has been modelled as a rigid part. However, the flexibility of the hammer shank changes the impact velocity of the hammer head, and also causes a greater scuffing motion for the hammer head during the contact with the string. The connection of the piano key to the ground had been simply modelled with a revolute joint, but the physical form of the connection at that point suggests that a revoluteprismatic joint with a contact force underneath better represents this connection. By comparing the experimental and analytical results, it is concluded that incorporating this new model significantly increases the fidelity of the model for the blows. In order to test the accuracy of the dynamic model, an experimental setup, including a servo motor, a load cell, a strain gauge, and three optical encoders, is built. The servo motor is used to actuate the piano key. Since the purpose of the motor is to consistently mimic the finger force of the pianist, the output torque of the motor is controlled. To overcome the problem associated with the motor torque control method used in previous work, a new torque control method is implemented on a real-time PC and a better control of the motor torque output is established. Adding a more realistic model of the piano string to the current piano action model and finding a better contact model for the contacts that happen between the surfaces that are made of felt (or leather), are two main areas that can be worked on in the future research. These two areas will help to further increase the fidelity of the present piano action model.

Page generated in 0.1062 seconds