• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 707
  • 707
  • 669
  • 165
  • 110
  • 71
  • 70
  • 62
  • 58
  • 50
  • 46
  • 44
  • 44
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Physical and economic factors and their effects on development of solar energy in Saudi Arabia

Al-Hegbani, Abdullah Abdulaziz January 1993 (has links)
The search for alternative energy resources began early in this century after the discovery of crude oil, but in 1973, when crude oil prices dramatically increased, the search for new energy sources intensified. The conservation of oil consumption, mainly in industrial countries has been more strictly applied, due to the limited quantities of fossil fuels, especially crude oil which is expected to be depleted within the next few decades. Moreover, the increasing level of air pollution and its severe consequences on human, animal, and plant life and climate, has forced the world to try to reduce air pollution emissions in the short-run, and to search for more reliable, renewable energy resources. Amongst renewable energy resources, solar energy has attracted much attention due to its unique characteristics, including its wide availability in huge quantities, particularly at the middle latitudes, its relatively simple harnessing compared with nuclear energy, and most importantly, its clean source which does not discharge any pollution emission. The intensity of solar radiation in Saudi Arabia reaches an average of 290 wm-2, one of the highest insolation values in the world. Here attention has been focused on solar energy as the main alternative sources of power. However, there is a great variation in the distribution of incoming solar radiation within Saudi Arabia. This variation is attributed mainly to six major factors. They include the following: 1. Sunshine duration 2. Insolation index 3. Altitude of the station 4. Specific humidity 5. Cloud cover, and 6. Dust storms. In order to measure the effect of each factor mentioned above on the variation of incoming solar radiation, a multiple linear regression model is developed and used. This is the most appropriate method to explain the interrelationships between the determinants and their dependent variable. In addition to the physical factors, the human factor is considered in this thesis as a result of the crucial effect of the perspectives and attitudes of people upon solar energy development. Therefore, a questionnaire was conducted at Al-Uyaynah Village, northwest of Riyadh, which has a solar-generated electricity in Saudi Arabia.
152

Solution monitoring as a nuclear materials safeguards tool

Scothern, Stephen John January 1998 (has links)
The work presented in this thesis describes a solution monitoring system that has been developed to assist United Nations' inspectors performing nuclear materials safeguards, primarily pertaining to plutonium storage and nuclear fuel reprocessing facilities. Based on the concept of the 'event', which is essentially any process that occurs on the plant, it aims to construct a hypothesis of which events have actually occurred, and to decide if any of these have safeguards implications. The package developed is robust, portable, and easy to use. The system has been implemented in G2 with extensive call-outs to FORTRAN and C routines. Sensor data from the plant is first analysed, and salient features (sub-events) are extracted. A model based diagnostic algorithm is then used to determine all possible causes of these sub-events; based on topographical knowledge of the plant, this makes extensive use of a simulation model. A rule based system then examines permutations of these sub-events and diagnoses, to find all possible events which could explain the data. From the possibilities generated, the most likely events are chosen on the basis of user specified subjective probabilities and on supporting evidence; these probabilities reflect the view that some events are more likely to be acceptable to the operator than others. Bayesian evidential updating methods are used to achieve this. An automatic model generator is presented, which extends the portability and applicability of the diagnostic aid, and makes implementation a great deal easier. Amongst other things, this enables simulations to be constructed automatically using a library of unit process models. The nature and forms of the various user interfaces are discussed. In particular facilities are available for creating and maintaining databases of rules which are used to identify, classify and rank the events. The system has been tested using data from a number of plants, both hypothetical and real. The primary test facilities have pertained to plutonium nitrate solution storage areas. A hypothetical solvent-extraction and concentration facility has also been considered, to extend the range of applicability of the system. These studies have demonstrated that solution monitoring has the potential to be a valuable aid for inspectors responsible for nuclear materials safeguards.
153

SYMEX : a systems theory based framework for workflow modelling and execution

Alevizos, Charalampos January 2009 (has links)
Workflow management systems enable organisations to deal with all aspects of business process management, including analysis, modelling, execution, and administration. Modelling workflow processes involves transformation of the process logic into a formal representation and it always remains a critical success factor for these systems. Workflow modelling languages provide constructs for capturing high-level descriptions of business processes, which are then have to be transformed and encoded into low-level execution semantics with the use of workflow programming languages. However, maintaining these models separately results in a number of issues, particularly when the various interdependencies between them are managed manually. This primarily creates difficulties in adaptation, in terms of identifying changes in high-level descriptions due to modifications of business conditions, and tracing the impact of those changes on the low-level execution semantics. Moreover, certain information included in the high-level descriptions is either partly encoded or omitted from the low-level execution semantics and at the same time, complicated business rules encoded at the execution level are not included in the high-level descriptions, creating major inconsistencies. The above issues result in high maintenance costs, reducing the overall efficiency and performance of workflow management systems. This thesis addresses the aforementioned problems by proposing a framework named SYMEX. SYMEX addresses the issue of integrating high and low-level descriptions in one unified format, from a Systems Theory perspective. SYMEX models have a mathematically defined formalism capable of capturing both high-level descriptions of business processes and low-level workflow execution semantics. Furthermore, SYMEX offers a concise and easy to learn and communicate set of constructs, allowing business analysts, process designers, and programmers to work on the same model, at different levels of abstraction. Apart from the theoretical framework, an XMLbased approach for the application of SYMEX is proposed, along with a constraint- based inference engine. Additionally, SYMEX models are evaluated in terms of their complexity and prove easier to read, understand, and manage than other traditional workflow modelling approaches. However, further research is required to assess the capability of the framework, with respect to modelling workflow processes in a service-oriented environment, where activities of business processes are essentially web-services exposed on the Internet.
154

Distributed termination detection for multiagent protocols

Motshegwa, Tshiamo January 2009 (has links)
The research conducted in this thesis is on distributed termination detection in multiagent systems. Agents engage in complex interactions by executing behaviour specifications in the form of protocols. This work presents and experiments with a framework for making termination in a multiagent system explicit. As a side effect, the mechanism can be exploited to aid management of agent interactions, by providing visibility of the interaction process and can be extended to drive multiagent system management tasks such as timely garbage collection. Results from previous attempts to deploy agents systems when scaling up, e.g. Agentcities, have shown and exposed a big gap between theory and practice especially in the reliability and availability of deployed systems. In particular more work needs to be done in the area of supporting agent infrastructures as much as in theoretical agent foundations. There are two aspects to this problem of termination detection in multiagent systems, firstly, the formal verification of behaviour at compile-time and secondly, monitoring and control at run-time. Regarding the former, there has been some work on the ver- 13 ification of agent communication languages. But overall verification is difficult and often requires knowledge of internal states of agents at compile time, and as yet has not been satisfactorily solved to be deployed in real systems. The second, the runtime approach is adopted in here. The research is not about protocol engineering but assumes correct protocols, and protocol specifications to be finite state machine graphs. Given these correct verified protocols, the thesis proposes a number of definitions culminating in identification of minimal information in the form of sub-protocols that agents being autonomous, can make available for the termination detection. An off line procedure for deriving these sub-protocols is then presented. The thesis then considers a termination detection model, and within this model, proposes an conversationmodel encompassing protocol executions, with hierarchical conversations modelled as diffusing computation trees and defines a number of predicates to derive termination in centralised and distributed environments. Algorithms that implement these predicates are sketched and some complexity analysis is performed. The thesis then considers a prototype implementation evaluated over some defined detection delays metric. The evaluation approach is heavily empirical, with an experimental approach adopted to evaluate various configurations of the termination detection mechanism. The evaluation employs robust resampling and bootstrapping methods to analyse and obtain distributions and confidence intervals of the detection delays metric for the termination detection mechanism.
155

Advanced photon counting applications with superconducting detectors

Pizzone, Andrea January 2017 (has links)
Superconducting nanowire single photon detectors (SNSPDs) have emerged as mature detection technology that offers superior performance relative to competing infrared photon counting technologies. SNSPDs have the potential to revolutionize a range of advanced infrared photon counting applications, from quantum information science to remote sensing. The scale up to large area SNSPD arrays or cameras consisting of hundreds or thousands of pixels is limited by efficient readout schemes. This thesis gives a full overview of current SNSPD technology, describing design, fabrication, testing and applications. Prototype 4-pixel SNSPD arrays (30 x 30 µm2 and 60 x 60 µm2) were fabricated, tested and time-division multiplexed via a power combiner. In addition, a photon-number resolved code-division multiplexed 4-pixel array was simulated. Finally, a 100 m calibration-free distributed fibre temperature testbed, based on Raman backscattered photons detected by a single pixel fibre-coupled SNSPD housed in a Gifford McMahon cryostat was experimentally demonstrated with a spatial resolution of approximately 83 cm. At present, it is the longest range distributed thermometer based on SNSPD sensing.
156

On-line decision support for take-off runway scheduling at London Heathrow Airport

Atkin, Jason Adam David January 2008 (has links)
The research problem considered in this thesis was presented by NATS, who are responsible for the take-off runway scheduling at London Heathrow airport. The sequence in which aircraft take off is very important and can have a huge effect upon the throughput of the runway and the consequent delay for aircraft awaiting take-off. Sequence-dependent separations apply between aircraft at take-off, some aircraft have time-slots within which they must take-off and all re-sequencing performed by the runway controller has to take place within restrictive areas of the airport surface called holding areas. Despite the complexity of the task and the short decision time available, take-off sequencing is performed manually by runway controllers. In such a rapidly changing environment, with much communication and observation demanded of the busy controller, it is hardly surprising that sub-optimal mental heuristics are currently used. The task presented by NATS was to develop the decision-making algorithms for a decision support tool to aid a runway controller to solve this complex real-world problem. A design for such a system is presented in this thesis. Although the decision support system presents only a take-off sequence to controllers, it is vitally important that the movement within the holding area that is required in order to achieve the re-sequencing is both easy to identify and acceptable to controllers. A key objective of the selected design is to ensure that this will always be the case. Both regulatory information and details of controller working methods and preferences were utilised to ensure that the presented sequences will not only be achievable but will also be acceptable to controllers. A simulation was developed to test the system and permit an evaluation of the potential benefits. Experiments showed that the decision support system found take-off sequences which significantly reduced the delay compared with those that the runway controllers actually used. These sequences had an equity of delay comparable with that in the sequences the controllers generated, and were achieved in a very similar way. Much of the benefit that was gained was a result of the decision support system having visibility of the taxiing aircraft in addition to those already queueing for the runway. The effects of uncertainty in taxi times and differing planning horizons are explicitly considered in this thesis. The limited decision time available ensures that it is not practical for a runway controller to consider as many aircraft as the decision support algorithms can. The results presented in this thesis indicate that huge benefits may be possible from the development of a system to simplify the sequencing task for the controllers while simultaneously giving them greater visibility of taxiing aircraft. Even beyond these benefits, however, the system described here will also be seen to have further potential benefits, such as for evaluating the effects of constraints upon the departure system or the flexibility of holding area structures.
157

Smart card security

Goikoetxea Yanci, Asier January 2012 (has links)
Smart Card devices are commonly used on many secure applications where there is a need to identify the card holder in order to provide a personalised service. The value of access to locked data and services makes Smart Cards a desirable attack target for hackers of all sorts. The range of attacks a Smart Card and its environment can be subjected to ranges from social engineering to exploiting hardware and software bugs and features. This research has focused on several hardware related attacks and potential threats. Namely, power glitch attack, power analysis, laser attack, the potential effect on security of memory power consumption reduction techniques and using a re-configurable instruction set as method to harden opcode interpretation. A semi-automated simulation environment to test designs against glitch attacks and power analysis has been developed. This simulation environment can be easily integrated within Atmel’s design flow to bring assurance of their designs’ behaviour and permeability to such attacks at an early development stage. Previous power analysis simulation work focused on testing the implementation of part of the cryptographic algorithm. This work focuses on targeting the whole algorithm, allowing the test of a wider range of countermeasures. A common glitch detection approach is monitoring the power supply for abnormal voltage values and fluctuations. This approach can fail to detect some fast glitches. The alternative approach used in this research monitors the effects of a glitch on a mono-stable circuit sensitive to fault injection by glitch attacks. This work has resulted in a patented glitch detector that improves the overall glitch detection range. The use of radiation countermeasures as laser countermeasures and potential sensors has been investigated too. Radiation and laser attacks have similar effects on silicon devices. Whilst several countermeasures against radiation have been developed over the years, almost no explicit mention of laser countermeasures was found. This research has demonstrated the suitability of using some radiation countermeasures as laser countermeasures. Memory partitioning is a static and dynamic power consumption reduction technique successfully used in various devices. The nature of Smart Card devices restricts the applicability of some aspects of this power reduction technique. This research line has resulted in the proposal of a memory partitioning approach suitable to Smart Cards.
158

Shaping surface acoustic waves for cardiac tissue engineering

Naseer, Shahid Mohammad January 2016 (has links)
The heart is a non-regenerating organ that gradually suffers a loss of cardiac cells and functionality. Given the scarcity of organ donors and complications in existing medical implantation solutions, it is desired to engineer a three-dimensional architecture to successfully control the cardiac cells in vitro and yield true myocardial structures similar to native heart. This thesis investigates the synthesis of a biocompatible gelatin methacrylate hydrogel to promote growth of cardiac cells using biotechnology methodology: surface acoustic waves, to create cell sheets. Firstly, the synthesis of a photo-crosslinkable gelatin methacrylate (GelMA) hydrogel was investigated with different degree of methacrylation concentration. The porous matrix of the hydrogel should be biocompatible, allow cell-cell interaction and promote cell adhesion for growth through the porous network of matrix. The rheological properties, such as polymer concentration, ultraviolet exposure time, viscosity, elasticity and swelling characteristics of the hydrogel were investigated. In tissue engineering hydrogels have been used for embedding cells to mimic native microenvironments while controlling the mechanical properties. Gelatin methacrylate hydrogels have the advantage of allowing such control of mechanical properties in addition to easy compatibility with Lab-on-a-chip methodologies. Secondly in this thesis, standing surface acoustic waves were used to control the degree of movement of cells in the hydrogel and produce three-dimensional engineered scaffolds to investigate in-vitro studies of cardiac muscle electrophysiology and cardiac tissue engineering therapies for myocardial infarction. The acoustic waves were characterized on a piezoelectric substrate, lithium niobate that was micro-fabricated with slanted-finger interdigitated transducers for to generate waves at multiple wavelengths. This characterization successfully created three-dimensional micro-patterning of cells in the constructs through means of one- and two-dimensional non-invasive forces. The micro-patterning was controlled by tuning different input frequencies that allowed manipulation of the cells spatially without any pre- treatment of cells, hydrogel or substrate. This resulted in a synchronous heartbeat being produced in the hydrogel construct. To complement these mechanical forces, work in dielectrophoresis was conducted centred on a method to pattern micro-particles. Although manipulation of particles were shown, difficulties were encountered concerning the close proximity of particles and hydrogel to the microfabricated electrode arrays, dependence on conductivity of hydrogel and difficult manoeuvrability of scaffold from the surface of electrodes precluded measurements on cardiac cells. In addition, COMSOL Multiphysics software was used to investigate the mechanical and electrical forces theoretically acting on the cells. Thirdly, in this thesis the cardiac electrophysiology was investigated using immunostaining techniques to visualize the growth of sarcomeres and gap junctions that promote cell-cell interaction and excitation-contraction of heart muscles. The physiological response of beating of co-cultured cardiomyocytes and cardiac fibroblasts was observed in a synchronous and simultaneous manner closely mimicking the native cardiac impulses. Further investigations were carried out by mechanically stimulating the cells in the three-dimensional hydrogel using standing surface acoustic waves and comparing with traditional two-dimensional flat surface coated with fibronectin. The electrophysiological responses of the cells under the effect of the mechanical stimulations yielded a higher magnitude of contractility, action potential and calcium transient.
159

Numerical modelling of braided fibres for reinforced concrete

Cortis, Michael January 2016 (has links)
Fire has been always a major concern for designers of steel and concrete structures. Designing fire-resistant structural elements is not an easy task due to several limitations such as the lack of fire-resistant construction materials. Concrete reinforcement cover and external insulation are the most commonly adopted systems to protect concrete and steel from overheating, while spalling of concrete is minimised by using HPFRC instead of standard concrete. Although these methodologies work very well for low rise concrete structures, this is not the case for high-rise and inaccessible buildings where fire loading is much longer. Fire can permanently damage structures that cost a lot of money. This is unsafe and can lead to loss of life. In this research, the author proposes a new type of main reinforcement for concrete structures which can provide better fire-resistance than steel or FRP re-bars. This consists of continuous braided fibre rope, generally made from fire-resistant materials such as carbon or glass fibre. These fibres have excellent tensile strengths, sometimes in excess of ten times greater than steel. In addition to fire-resistance, these ropes can produce lighter and corrosive resistant structures. Avoiding the use of expensive resin binders, fibres are easily bound together using braiding techniques, ensuring that tensile stress is evenly distributed throughout the reinforcement. In order to consider braided ropes as a form of reinforcement it is first necessary to establish the mechanical performance at room temperature and investigate the pull-out resistance for both unribbed and ribbed ropes. Ribbing of ropes was achieved by braiding the rope over a series of glass beads. Adhesion between the rope and concrete was drastically improved due to ribbing, and further improved by pre-stressing ropes and reducing the slacked fibres. Two types of material have been considered for the ropes: carbon and aramid. An implicit finite element approach is proposed to model braided fibres using Total Lagrangian formulation, based on the theory of small strains and large rotations. Modelling tows and strands as elastic transversely isotropic materials was a good assumption when stiff and brittle fibres such as carbon and glass fibres are considered. The rope-to-concrete and strand-to-strand bond interaction/adhesion was numerically simulated using newly proposed hierarchical higher order interface elements. Elastic and linear damage cohesive models were used effectively to simulate non-penetrative 'free' sliding interaction between strands, and the adhesion between ropes and concrete respectively. Numerical simulation showed similar de-bonding features when compared with experimental pull-out results of braided ribbed rope reinforced concrete.
160

Condition monitoring of helical gearboxes based on the advanced analysis of vibration signals

Elbarghathi, Fathalla January 2016 (has links)
Condition monitoring of rotating machinery and machine systems has attracted extensive researches, particularly the detection and diagnosis of machine faults in their early stages to minimise maintenance cost and avoid catastrophic breakdowns and human injuries. As an efficient mechanical system, helical gearbox has been widely used in rotating machinery such as wind turbines, helicopters, compressors and internal combustion engines and hence its vibration condition monitoring is attracting substantial research attention worldwide. However, the vibration signals from a gearbox are usually contaminated by background noise and influenced by operating conditions. It is usually difficult to obtain symptoms of faults at the early stage of a fault. This study focus on developing effective approaches to the detection of early stage faults in an industrial helical gearbox. In particular, continuous wavelet transformation (CWT) has been investigated in order to select an optimal wavelet to effectively represent the vibration signals for both noise reduction and fault signature extraction. To achieve this aim, time synchronous average (TSA) is used as a tool for preliminary noise reduction and mathematical models of a gearbox transmission system is developed for characterising fault signatures. The performance of three different wavelet families was compared and henceforth a criterion and method for the selection of the most discerning has been established. It has been found that the wavelet that gives the highest RMS value for the baseline vibration signal will show the greatest difference between baseline and gearbox vibration with a fault presence. Comparison of the three wavelets families shows that the Daubechies order 1 can give best performance for feature extraction and fault detection and fault quantification. However, there are limitations that undermine CWT application to fault detection, in particular the difficulty in selecting a suitable wavelet function. A major contribution of this research programme is to demonstrate a possible route on how to overcome this deficiency. An adaptive Morlet wavelet transform method has been proposed based on information entropy optimization for analysing the vibration signal and detecting and quantifying the faults seeded into the helical gearbox. This research has also developed a nonlinear dynamic model of the two-stage helical gearbox involving time–varying mesh stiffness and transmission error. Based on experimental data collected with different operating loads and the simulating results vibration signatures for gear faults are fully understood and hence confirms the CWT based scheme for signal enhancement. These results also indicate that the dynamic model can be used in studying gear faults and would be useful in developing gear fault monitoring techniques.

Page generated in 0.0906 seconds