• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

β-Glucan Exacerbates Allergic Airway Responses to House Dust Mite Allergen

Hadebe, Sabelo, Kirstein, Frank, Fierens, Kaat, Redelinghuys, Pierre, Murray, Graeme I., Williams, David L., Lambrecht, Bart N., Brombacher, Frank, Brown, Gordon D. 02 April 2016 (has links)
β-(1,3)-Glucan is present in mould cell walls and frequently detected in house dust mite (HDM) faeces. β-Glucan exposure is thought to be associated with pulmonary allergic inflammation in mouse and man, although the published data are inconsistent. Here, we show that highly purified β-glucan exacerbates HDM-induced eosinophilic, T helper 2 type airway responses by acting as an adjuvant, promoting activation, proliferation and polarisation of HDM-specific T cells (1-Derβ T cells). We therefore provide definitive evidence that β-glucan can influence allergic pulmonary inflammation.
2

Mucin Biosynthesis: Upregulation of Core 2 β1,6 N- Acetylglucosaminyltransferase by Retinoic Acid and Th2 Cytokines in a Human Airway Epithelial Cell Line

Beum, Paul V., Basma, Hesham, Bastola, Dhundy R., Cheng, Pi Wan 01 January 2005 (has links)
Vitamin A and the T helper 2 cytokines IL-4 and IL-13 play important roles in the induction of mucin gene expression and mucus hypersecretion. However, the effects of these agents on enzymes responsible for mucin glycosylation have received little attention. Here, we report the upregulation of core 2 β1,6 N-acetylglucosaminyltransferase (C2GnT) activity both by all-trans retinoic acid (RA) and by IL-4 and IL-13 in the H292 airway epithelial cell line. Northern blotting analysis showed that the M isoform of C2GnT, which is expressed in mucus-secreting tissues and can form all mucin glycan β1,6-branched structures, including core 2, core 4, and blood group I antigen, was upregulated by both RA and IL-4/13. The L isoform, which forms only the core 2 structure, was moderately upregulated by IL-4/13 but not by RA. Enhancement of the M isoform of C2GnT by RA was abolished by an inhibitor, of RA receptor α, implicating RA receptor α in the effect of RA. Likewise, an inhibitor of the Janus kinase 3 pathway blocked the enhancing effects of IL-4/13 on the L and M isoforms of C2GnT, suggesting a role of this pathway in the upregulation of these two C2GnTs by these cytokines. Taken together, the results suggest that IL-4/13 T helper 2 cytokines and RA can alter the activity of enzymes that synthesize branching mucin carbohydrate structure in airway epithelial cells, potentially leading to altered mucin carbohydrate structure and properties.
3

The Role of Eosinophils in the Regulation of CD4+ T helper 2 Regulated Inflammation

MacKenzie, Jason Roderick, Jason.Mackenzie@ipaustralia.gov.au January 2004 (has links)
The eosinophil is a leukocyte whose intracellular mediators are considered to play a central role in the pathogenesis of allergic diseases, including allergic asthma, allergic rhinitis and atopic dermatitis, and which is also involved in immunological responses to parasites. Eosinophil differentiation and maturation from bone marrow progenitors is regulated by interleukin-5 (IL-5), which may be secreted by T helper 2 (Th2) T lymphocytes, and is consistently upregulated in allergic conditions. Eotaxin is a potent chemoattractant for circulating and tissue eosinophils, and the production of this chemokine promotes eosinophil infiltration and accumulation within sites of allergic inflammation.¶ Eosinophils obtained from inflammatory tissues and secretions display an altered phenotype in comparison to peripheral blood eosinophils, with increased surface expression of major histocompatibility complex (MHC) proteins and adhesion molecules (Hansel et al., 1991), and migration across the microvascular endothelium may also increase their capacity to generate an oxidative burst (Walker et al., 1993; Yamamoto et al., 2000). Eosinophils are phagocytic cells, and have been shown to present simple (no requirement for intracellular processing) and complex antigens to MHC-restricted, antigen-specific T lymphocytes (Del Pozo et al., 1992; Weller et al., 1993). Furthermore, eosinophils express the costimulatory molecules required for effective antigen presentation (Tamura et al., 1996), and ligation of costimulatory molecules on the eosinophil cell surface can induce the release of eosinophil derived cytokines (Woerly et al., 1999; Woerly et al., 2002). Therefore the eosinophil may also regulate immune responses.¶ To date, no studies have demonstrated the ability of eosinophils to modulate activated T lymphocyte function via presentation of relevant antigen in the context of MHC class II (MHC-II), concomitant with Th2 cytokine release. In the experiments described in this thesis, murine eosinophils have been observed to rapidly migrate to sites of antigen deposition within the airways mucosa of naïve mice, suggesting a potential role for this granulocyte in the primary response to inhaled antigen. However, human allergic diseases are often diagnosed after the establishment of allergic responses, and symptom development. Therefore, a murine model of allergic airways disease (AAD) was used to investigate the ability for eosinophils to participate as antigen presenting cells (APCs), and thereby modulate activated T lymphocyte function both in vitro and in vivo. Detailed histological analysis of the pulmonary draining lymph nodes following antigen challenge in sensitised mice revealed a rapid infiltration of eosinophils into this tissue, which preceded the accumulation of eosinophils in bronchoalveolar lavage fluid (BALF). This suggested that eosinophils were preferentially translocating to the draining lymph nodes following antigen challenge, and that the subsequent accumulation of these cells in the BALF was a consequence of continued antigen delivery to the lower airways.¶ Eosinophil trafficking to lymphoid tissue via the afferent lymphatics was substantiated using electron microscopy of lymph node sections and the intravenous (i.v.) transfer of fluorescently labeled eosinophils, which did not traffic to lymph nodes via the blood. During the resolution of AAD, eosinophils were noted for their persistence in the pulmonary draining lymph nodes. These observations suggested a continued modulation of T cell function by lymph node dwelling eosinophils during AAD resolution, particularly in light of recent observations for draining lymph node T cell proliferation following instillation of antigen-pulsed eosinophils into the allergic mouse lung (Shi et al., 2000).¶ To further investigate the antigen presenting capacity, eosinophils were obtained from the BALF of mice with AAD, and their surface expression of MHC class II (MHC-II) proteins and costimulatory molecules confirmed using flow cytometric analysis. The ability to acquire and process complex antigen both in vitro and in vivo was also confirmed using naturally quenching fluorescenated ovalbumin (OVA), which is degraded into fluorescent peptides by the action of intracellular proteases. Thus, eosinophil expression of the surface molecules necessary for effective antigen presentation was confirmed, as was their ability to process complex antigen. Further investigations revealed that eosinophils can present complex OVA antigen to CD4+ T lymphocytes obtained from the allergic mouse, and to in vitro derived OVA-specific Th2 cells. In the presence of exogenous antigen, eosinophils co-cultured with T lymphocytes were able to induce Th2 cytokine production, and demonstrated an ability for eosinophils to modulate T lymphocyte function in vitro.¶ The ability for eosinophils to act as antigen presenting cells in vivo was also investigated. Eosinophils obtained from the antigen-saturated lungs of OVA sensitised and challenged mice were transferred to the peritoneal cavities of naïve host mice. When subsequently challenged with aerosolised OVA, eosinophil recipients developed a pulmonary eosinophilia similar to that of OVA sensitised and challenged mice. To validate this finding, the experimental procedure was altered to accommodate the use of non-allergy derived eosinophils, which were pulsed with OVA in vitro, prior to transfer into naïve recipients. When subsequently challenged with aerosolised OVA, eosinophil recipients developed a peripheral blood and pulmonary eosinophilia, and stimulation with OVA induced IL-5 and IL-13 cytokine production from pulmonary draining lymph node cells. Notably, the AAD induced by transfer of antigen pulsed eosinophils did not induce detectable OVA-specific IgG1, which may be attributed to the lack of soluble antigen required for B cell antibody production.¶ During the course of these investigations, an OVA T cell receptor (TCR) transgenic mouse (OT-II) was procured with a view to defining the interaction between eosinophils and activated T lymphocytes (Barnden et al., 1998). Despite having specificity for the OVA323-339 peptide, an immunodominant epitope that skews naïve T cell responses towards Th2 cytokine release (Janssen et al., 2000), T lymphocytes from the OT-II mouse preferentially secreted IFN-γ in response to stimulation with either OVA peptide or OVA. These mice were further characterised in a mouse model of AAD, and found to be refractory to disease induction and progression, which may be attributed to significant IFN-γ secretion by transgenic CD4+ T lymphocytes during antigen sensitisation. Indeed, these cells were noted for their ability to attenuate pulmonary eosinophilia when transferred to OVA sensitised and challenged wild type mice, although serum OVA-specific IgG1, peripheral blood eosinophilia levels and airways response to methacholine challenge remained intact.¶ Knowledge of the biased Th1 phenotype in naïve OT-II provided a unique opportunity to investigate the fate of T lymphocytes bearing high affinity OVA-specific TCRs following neonatal antigen exposure to soluble OVA. In a previous study, subcutaneous (s.c.) administration of soluble OVA to wild type neonatal mice was suspected to have deleted OVA-specific T cells from the T cell repertoire (Hogan et al., 1998a). Using flow cytometry and TCR specific antibody, the delivery of s.c. OVA to OT-II neonates did not alter transgenic T cell populations in adult mice. Instead, it was surprising to find a skewing towards the Th2 phenotype and loss of IFN-γ secretion following OVA sensitisation and challenge in adult mice. A mechanism for this reprogramming of the transgenic T cell from the Th1 to a Th2 phenotype following OT-II neonatal exposure to soluble OVA is proposed, and further experimentation may validate this hypothesis.¶ In conclusion, eosinophils residing in the allergic lung have the capacity to interact with activated T cells, both within this tissue and the draining lymph nodes. Despite their relative inefficiency as antigen presenting cells (Mawhorter et al., 1994), eosinophils may participate en masse in the serial triggering of activated TCRs, and provide appropriate costimulatory signals that modulate T lymphocyte function. Through the elaboration of Th2 cytokines and stimulation of T cell proliferation, antigen presenting eosinophils may transiently prolong or exacerbate the symptoms of allergic diseases. Alternatively, eosinophils presenting relevant antigens may inhibit T cell activity via degranulation, and such activity has recently been observed in a parasite model (Shinkai et al., 2002). Finally, experiments in the OT-II mouse have provided valuable information to suggest that therapies designed to modulate eosinophil numbers in allergic tissues through the secretion of opposing cytokines such as IFN-γ, may be of limited benefit. The results shown here suggest that airways dysfunction remains intact despite significantly reduced pulmonary eosinophilia
4

Mechanisms of Measles Virus-Induced Immune Suppression in the Cotton Rat Model

Carsillo, Mary Elizabeth 16 September 2009 (has links)
No description available.

Page generated in 0.0293 seconds