61 |
Importance of plants and microorganisms in the Phytoremediation of brownfield sitesAfegbua, Seniyat Larai January 2014 (has links)
Phytoremediation is an emerging green technology for the restoration of contaminated sites with various organic and inorganic contaminants. However, phytoremediation efficiency is limited by factors such as contaminant concentration, toxicity and bioavailability, plant choice and stress tolerance, and competence of indigenous microorganisms. A number of possible solutions have been proposed to overcome these limitations. The use of tolerant plant candidates, mixed plant communities and bioaugmentation with microbes and/or plant growth promoting bacteria (PGPB) have been proposed to suppress plant growth inhibition/phytotoxicity and enhance contaminant degradation through the rhizosphere effect but there is need for more research to understand their impact. This research assessed the impact of contaminant stress (diesel fuel, PAH; phenanthrene, fluoranthene and benzo[a]pyrene, and heavy metal) on selected plant species and microbial community structure, contribution of abiotic processes and rhizoremediation to PAH dissipation, and the impact of PGPB on plant growth and PAH dissipation. These objectives were achieved through greenhouse experiments with M. sativa, F. arundinacea and L. perenne on diesel fuel- and PAH-spiked soils. Diesel-fuel treatments had a negative impact on plant biomass yields while the single and mixed PAH treatments had stimulatory and inhibitory effects on plant biomass yields relative to the control.
|
62 |
Role of eEF1A in the Nuclear Export of the VHL Tumour Suppressor ProteinFrancisco, Camille 19 September 2012 (has links)
The ability of proteins to engage in nuclear-cytoplasmic shuttling is required for their proper function. The nuclear export of the von Hippel Lindau (VHL) tumour suppressor protein is necessary for the proteasomal degradation of the hypoxia inducible factor alpha (HIFα). Studies have identified that the nuclear export of VHL and other proteins encoding a Transcription-Dependent Nuclear Export Motif (TD-NEM) is independent of the classical CRM1 nuclear export pathway but requires ongoing transcription. Furthermore, the eukaryotic elongation factor 1 alpha (eEF1A) was identified as a mandatory component of the TD-NEM-mediated nuclear export machinery. In this study, we have uncovered the ability of eEF1A to mediate the nuclear export of proteins by accessing the nuclear compartment in its inactive, GDP-bound form. Although previously thought of as a strictly cytoplasmic protein, work conducted in this thesis has shown that eEF1A is a nuclear-cytoplasmic shuttling protein and this ability is required for the effective export of proteins encoding a TD-NEM.
|
63 |
The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing TreatmentChang, Shu-Ming 10 July 2003 (has links)
With increasing integration density of very large scale integrated (VLSI) devices, multilevel metallization technology is becoming more important than it used to be. In advanced logic devices, the interlayer dielectrics have increased to four or five layers. Silicon oxide films are used as interlayer film. One candidate for making interlayer film with a low dielectric constant is F-doped Silicon oxide (SiOF). Such films have a low dielectric constant and that moisture absorption is the main drawback in using this material. For this reason, we intend to dehydrate the SiOF films by thermal annealing treatment. It could improve the electrical properties of oxide films and obtain a reliable film with lower dielectric constant.
This is our purpose in this paper to explore the electrical and chemical properties of LPD-SiOF films with annealing treatment. The chemical and electrical properties can be controlled well within 250 ~ 450 ¢J annealing treatment. The LPD-SiOF film deposited at 40 ¢J with 0.8 M NH4OH incorporation and 350 ¢J annealing treatment obtain the best electrical results. The dielectric constant can drop to about 3.2, and the leakage current density can be improved to about 1¡Ñ10-7 A/cm2 under 1.5 MV/cm. Results of this study demonstrate that the SiOF films prepared by LPD with NH4OH incorporation followed by annealing treatment is suitable for IMD application.
|
64 |
Emissions of aggregated micro-generatorsSkarvelis-Kazakos, Spyros January 2011 (has links)
The key question this thesis aims to address is to what extent can micro-generation sources contribute to the carbon emission reduction targets set by the UK government. The operational emissions of micro-CHP capable micro-generators were examined against the UK grid electricity and gas boiler heat. Fossil and biomass fuels were considered. The life-cycle emissions associated with the manufacturing, transport and disposal of micro-generators were calculated. Case studies were constructed, based on the literature. It was found that emissions associated with domestic electrical and thermal demand would be reduced significantly. A Virtual Power Plant (VPP) was defined for aggregating micro-generators, using micro-generation penetration projections for the year 2030 from the literature. An optimisation problem was described, where the goal was to minimise the VPP carbon emissions. The results show the amount of emissions that would potentially be reduced by managing an existing micro-generation portfolio in a VPP. An Environmental Virtual Power Plant (EVPP) was defined, for controlling micro-generator carbon emissions. A multi-agent system was designed. The principle of operation resembles an Emissions Trading Scheme. Emission allowances are traded by the micro-generators, in order to meet their emissions needs. Three EVPP control policies were identified. Fuzzy logic was utilised for the decision making processes. Simulations were performed to test the EVPP operation. The main benefit for the micro-generators is the ability to participate in markets from which they would normally be excluded due to their small size. The multi-agent system was verified experimentally using micro-generation sources installed in two laboratories, in Athens, Greece. Two days of experiments were performed. Results show that system emissions have been successfully controlled, since only small deviations between desired and actual emissions output were observed. It was found that Environmental Virtual Power Plant controllability increases significantly by increasing the number of participating micro-generators.
|
65 |
Pollutant monitoring with fibre optics in the deep ultravioletBelz, Mathias January 1998 (has links)
This thesis reports on work carried out in the development of ultraviolet fibre-optic based absorption sensor systems, including those with the newly available ultraviolet improved silica fibres having low attenuation in the 200 nm to 250 nm wavelength region. Several approaches to optimize the optical design of such sensor systems, their sensitivity and stability are discussed. These fibre-optic sensor systems may be used for remote on-line and real-time analysis of process and water quality, enabling a separation of monitoring equipment from the sensor cell, which thus may be situated in a potentially hazardous environment. The effect of temperature variations on wavelength stability and dark output of inexpensive spectrometer modules, potentially useful for field applications, and the subsequent effect on the accuracy of absorption measurements, as well as the sensitivity of such spectrometer modules at wavelength below 250 nm, is investigated. Further, the performance of a remote fibre-optic sensor system, based on a reflectance cell with an optical pathlength of 1 cm, to measure nitrate concentrations in the wavelength region between 200 nm and 250 nm, is reported. Finally, to improve the sensitivity of such ultraviolet sensor systems, the performance of two fibre-coupled sensor cells with increased optical pathlengths has been investigated. The first sensor cell, based on an aluminium coated fused silica capillary cell, having an optical pathlength of 43 em, is demonstrated in the construction of a residual chlorine sensor. The second sensor cell, a capillary cell with an inner coating of Teflon AF, uses the low refractive index and the high transparency of Teflon AF in the ultraviolet to form a liquid-core waveguide (LeW). This sensor cell has an optical pathlength of 203 mm, extending the use of long pathlength cells to the 200 nm to 250 nm wavelength region. Its performance is illustrated when applied to monitoring low concentrations of nitrates, chlorine and acetylsalicylic acid.
|
66 |
Integration of offshore wind farms through High Voltage Direct Current networksLivermore, Luke January 2013 (has links)
The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared.
|
67 |
Prediction and reduction of traffic pollution in urban areasBostock, Adam K. January 1994 (has links)
This thesis is the result of five years research into road traffic emissions of air pollutants. It includes a review of traffic pollution studies and models, and a description of the PREDICT model suite and PREMIT emissions model. These models were used to evaluate environmentally sensitive traffic control strategies, some of which were based on the use of Advanced Transport Telematics (ATT). This research has improved our understanding of traffic emissions. It studied emissions of the following pollutants: carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx). PREMIT modelled emissions from each driving mode (cruise, acceleration, deceleration and idling) and, consequently, predicted relatively complex emission characteristics for some scenarios. Results suggest that emission models should represent emissions by driving mode, instead of using urban driving cycles or average speeds. Emissions of NOx were more complex than those of CO and HC. The change in NOx, caused by a particular strategy, could be similar or opposite to changes in CO and HC. Similarly, for some scenarios, a reduction in stops and delay did not reduce emissions of NOx. It was also noted that the magnitude of changes in emissions of NOx were usually much less than the corresponding changes in CO and HC. In general, the traffic control strategies based on the adjustment of signal timings were not effective in reducing total network emissions. However, high emissions of pollutants on particular links could, potentially, be reduced by changing signal timings. For many links, mutually exclusive strategies existed for reducing emissions of CO and HC, and emissions of NOx. Hence, a decision maker may have to choose which pollutants are to be reduced, and which can be allowed to increase. The environmental area licensing strategy gave relatively large reductions in emissions of all pollutants. This strategy was superior to the traffic signal timing strategies because it had no detrimental impact on the efficiency of the traffic network and gave simultaneous reductions in emissions of CO, HC and NOx.
|
68 |
Some studies on asphaltene stabilised water-in-oil emulsionsSymonds, John David January 1975 (has links)
Various workers have shown the asphaltene fraction of crude oil to be responsible for the highly stable W/O emulsions formed after marine oil spillages. Electron microscope studies on crude oil emulsions using the freeze etching technique showed the oil/water interface to be smooth on the aqueous side but to have a particulate structure on the oil side. In Brega crude oil emulsions, waxy plates were aligned along the interface. Also observed were the coherence of the interfacial film and droplet coalescence. Allowing a method error of ± 10%, good agreement was found between computer calculated droplet diameters from the log-normal distribution equation and standard statistical mean diameters. Sc (interfacial area/unit volume oil phase) was larger for salt water emulsions. An equation proposed for Sc as a function of stirring time fitted very well for all three crude oil emulsions. The maximum Sc increased with φ (volume fraction) indicating a minimum possible diameter droplet fold by the stirrer. A rate parameter in the equation is probably related to the asphaltene diffusion to the interface. A good fit with the data was obtained when the equation was modified to account for detergent addition delaying emulsion formation. A second rate parameter may reflect the irreversible replacement of detergent at the interface by asphaltenes. Ageing studies showed that once stabilisation was complete, detergent present only slowly affected coalescence. A heating effect explained the non-linearity of Kuwait and Tia Juana emulsion rheograms. The greater viscosity of Tia Juana stabilised emulsions was explained by a thicker supporting asphaltene layer. The elasticity of the-interfacial film accounted for anomalous behaviour in emulsions of asphaltenes dispersed in m-xylene/n-octane. The extrapolated yield point and critical shear rate were used as empirical measures of deformability and attractive forces respectively.
|
69 |
The use of computer graphics and visualisation (from reconstruction to training) for the resource sector of Western AustraliaFowle, Kenneth January 2003 (has links)
The minerals and energy sector can rightly be classified as comprising an extremely hazardous working environment in which numerous situations exist for accidents and incidents involving personnel and equipment to occur. Accidents are often explained by what are referred to as 'human factor'. The often used explanation, 'technical-failure', gives the impression that technology lives a life of its own without human intervention. However, technical failure often occurs because of human errors in construction, installation, maintenance or operation. It is the person who triggers the risks who is made morally (and sometime legally) responsible. When an operator makes a mistake (an active error) he or she is personally blamed. When a designer or constructor makes a mistake, or when cheap or inferior equipment is bought, or when maintenance is faulty, the responsibility is depersonalised and it becomes a 'technology' fault (Sunderstrom-Frisk, 1998). This research examines ways of using expert information using computer graphics and visualisation to produce visual applications that demonstrate and explain, but also have the added ability to teach the user or viewer, with the intent to assess their competency. Today's technology provides educators, students, professional bodies and the general public access to large amounts of information in a visual form. We repackage technical literature and data as movies and videos for audiences to view, instead of reading the information. Understanding may be achieved rapidly instead of taking days, weeks or months. From a visual presentation the viewers absorb information, which is easy to retain. The reconstructions discussed in this research concern the minerals and energy sector of Western Australia. They not only show what went wrong but can also be customised to demonstrate how to prevent an accident/incident. The benefits of this to industry is primarily: the ability to reuse the reconstruction instead of closing down a production line that cost the company and industry many thousands of dollars, and no lives are exposed to hazardous environments while examining the reconstruction for investigation or training purposes.
|
70 |
A study of hybrid clarification-filtration processes for potable water treatmentPrice, Robert January 2005 (has links)
This research investigates the removal of natural organic matter (NOM) from low turbidity waters by optimising an integrated coagulation and membrane filtration process. In conjunction with a regional water utility, the feasibility and operability of pre-coagulation with ultrafiltration membrane units, is investigated at both the fundamental and applied levels. The pH of coagulation greatly affects the growth of flocs. Although flocs are produced over the range of pH values, there is a significant improvement in performance at the optimum pH. The results show that for ferric sulphate, the optimum pH value for coagulation was 4.8; for ferric chloride the optimum pH value was 5.0; and for alum the optimum pH value was 6. Manipulation of the mixing regime during orthokinetic flocculation allows control of the final floe size. A high shear rate (447 s-1) induces greater particle collision and micro-floc formation, allowing an increased rate of growth during slow mixing. A mixing regime of 60 seconds rapid mixing (shear rate G= 447 s-1) followed by 3 minutes slow mixing (shear rate G= 20 s-1) is required for flocculation of the NOM and adequate enmeshment and removal of excess iron. Experiments conducted with the optimised coagulation regime and a Norit hollow fibre ultrafiltration membrane, operated in dead-end mode, leads to significant fouling. The results for the submerged Zenon ultrafiltration membrane also indicated membrane fouling, when the coagulation regime was optimised for NOM reduction and iron removal. Changing the coagulation regime altered the level of membrane fouling. It can be concluded that the optimum coagulation conditions in conventional water treatment are not always the optimum conditions for coagulation with ultrafiltration treatment and the unconventional coagulation conditions can be much more effective, than the conventional ones, in the context of membrane filtration, depending on the raw water characteristics.
|
Page generated in 0.0248 seconds