• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 385
  • 336
  • 86
  • 52
  • 37
  • 21
  • 18
  • 14
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • Tagged with
  • 1168
  • 506
  • 236
  • 225
  • 221
  • 181
  • 177
  • 157
  • 152
  • 118
  • 109
  • 101
  • 97
  • 94
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Evaluation of a Laboratory Accelerated Stripping Simulator for Hot Mix Asphalt Mixes

Moore, Vernon Morgan 07 August 2004 (has links)
Moisture susceptibility of hot mix asphalt (HMA) pavements continues to be a major pavement distress. Past research has primarily focused on HMA stripping prevention through material component evaluation/testing and addition of preventative additives. Stripping is caused by traffic, water, and high in-place service temperatures. Today, agencies use various methods to evaluate HMA moisture susceptibility with varying degrees of success. The study objective was to evaluate a prototype stripping simulator?s ability to predict HMA moisture susceptibility. The simulator evaluates moisture susceptibility by measuring conditioning water turbidity. Boil test and indirect tensile strength testing were also conducted for comparison purposes. Stripping simulator results indicate further refinement is required before it can be used for moisture susceptibility prediction.
162

Biomechanical And Molecular Characteristics Of 'Hyperelastosis Cutis' In Quarter Horses

Grady, Jesse Glennan 15 December 2007 (has links)
The biomechanical and molecular characteristics of equine hyperelastosis cutis (HC) are not fully known. This study sought to better characterize HC by analysis of ultimate tensile strength, modulus of elasticity, toughness, and thickness of skin from 23 affected and unaffected horses. In addition total soluble collagen and glycosaminoglycan concentrations of skin were analyzed from 26 affected and unaffected horses. Affected horses' skin proved to be significantly weaker at five of seven sample locations (p<=0.05). The modulus of elasticity proved to be significantly different at three of seven sample locations and toughness at two of seven locations (p<=0.05). No significant difference was proven to exist between HC affected and unaffected horses for skin thickness or total soluble collagen and GAG concentrations. Collectively this data demonstrates that HC animals' reduced skin tensile strength is not due to a deficit of either collagen or GAG, but likely a result of altered collagen micro-architecture.
163

Design, Fabrication, and Verification of a Miniature Load Frame

Howard, Andrew Martin 05 May 2007 (has links)
This thesis documents the tasks in support of the design and instrumentation of a miniature tensile load frame.
164

Design of a Tensile Tester to Test an Ant Neck Joint

Kakumani, Akul January 2017 (has links)
No description available.
165

Effects of Microstructure and Processing on Fracture And Fatigue Crack Growth Of Ti-43.5Al-4Nb-1Mo (TNM) Third Generation Turbine Blade Material

Dahar, Matthew Scott 02 February 2018 (has links)
No description available.
166

Orientation in Polyethylene-Nanoclay Composites

Champhekar, Mangesh C. January 2008 (has links)
No description available.
167

Lightweight Aluminum Structures with EmbeddedReinforcement Fibers via Ultrasonic Additive Manufacturing

Scheidt, Matthew 28 December 2016 (has links)
No description available.
168

Analysis of crack propagation in asphalt concrete using a cohesive crack model

Perng, Jia-Der January 1989 (has links)
No description available.
169

Structure-Property Relationships: Model Studies on Melt Extruded Uniaxially Oriented High Density Polyethylene Films Having Well Defined Morphologies

Zhou, Hongyi 14 February 1997 (has links)
High density polyethylene (HDPE) films having simple and well-defined stacked lamellar morphology, either with or without a distinct presence of row-nucleated fibril structures, have been utilized as <i>model</i> materials to carry out investigations on solid state structure-property relationships. Four different subjects that were addressed are: 1) mechanical properties and deformation morphologies, 2) orientation anisotropy of the dynamic mechanical α relaxation, 3) orientation dependence of creep behavior, and 4) crystalline lamellar thickness and its distribution. For the first three topics, appropriate mechanical tests, including tensile (INSTRON), creep (TMA), and dynamic mechanical (DMTA) tests, were performed at <i>different angles with respect to the original machine direction (MD)</i> of the melt extruded films; morphological changes as a result of these mechanical tests were detected by WAXS, SAXS, and TEM. For the forth topic, crystalline lamellar thickness and its distribution were determined by DSC, SAXS, TEM and AFM experiments. In the <i>large strain deformation</i> study (chapter 4.0), samples were stretched at 00°, 45° and 90° angles with respect to the original MD. A distinct orientation dependence of the tensile behavior was observed and <i>correlated</i> to the corresponding deformation modes and morphological changes, namely 1) lamellar separation and fragmentation by chain slip for the 00° stretch, 2) lamellar break-up via chain pull-out for the 90° stretch, and 3) lamellar shear, rotation and break-up through chain slip and/or tilt for the 45° stretch. A strong strengthening effect was observed for samples with row-nucleated fibril structures at the 00° stretch; whereas for the 90° stretch, the presence of such structures significantly limited deformability of the samples. In the <i>dynamic strain mechanical α relaxation</i> study (chapter 5.0), samples were tested at nine different angles with respect to the original MD, and the morphologies of samples <i>before</i> and </i>after</i> the dynamic tests were also investigated. The mechanical dispersions for the 00° and 90° tests were believed to arise essentially from the crystalline phase, and they contain contributions from two earlier recognized sub-relaxations of α<sub>I</sub> and α<sub>II</sub>. While for the 45° test, in addition to a high temperature α<sub>II</sub> relaxation, a interlamellar shear induced low temperature mechanical relaxation was also observed. It is concluded that the low temperature relaxation is related to the characteristics of the interface between the crystalline lamellae and amorphous layers. In the <i>small strain creep</i> study (chapter 6.0), samples were tested at the 00°, 45° and 90° angles at the original MD. Both creep strain and creep rate for samples at the three angles were very different. An Eyring-rate model was utilized to analysis the observed creep behavior, and structural parameters associated with this model, including population of creep sites, activation energy and volume, were obtained by fitting the experimental data to the Eyring-rate equation. It was concluded that the plateau creep rate in these model materials is primarily controlled by the density and physical state of tie-chains in the amorphous phase. For the lamellar thickness and distribution study, DSC, SAXS, TEM and AFM experiments were conducted for samples having a well-defined stacked lamellar morphology. It was found that the most probable lamellar thickness from SAXS and TEM agreed very well; however, these values did not match with those obtained by DSC and AFM. It was pointed out that the use of DSC to determine lamellar thickness and distribution is so sensitive to heating rate and numerical values for the parameters in the Gibbs-Thomson equation that it is not believed to be suitable for quantitative analysis. / Ph. D.
170

Computing Wall Thickness and Young's Modulus of Carbon Nanotubes with Atomistic Molecular Dynamics Simulations

Ahmed, Tabassum 02 June 2021 (has links)
Carbon nanotubes (CNTs) are tubular structure of a layer or layers of carbon atoms. CNTs serve as a prototypical nanomaterial holding great promises for various basic and applied research applications in the fields of electrical, thermal, and structural materials owing to their superlative mechanical, thermal, electrical, optical, and chemical properties. Since the discovery of CNTs by Iijima in 1991, numerous researches have been conducted to quantify and understand the atomic origin of their high strength, exceptional thermal conductivity, and unique electrical properties. CNTs are also widely used as nanofillers in composite materials to enhance their mechanical properties such as fracture toughness and to serve as sensing agents. There is thus an imperative need to deeply understand the physical properties of CNTs and their responses to various models of deformations such as stretching, bending, twisting, and combinations thereof. In this thesis, we apply all-atom molecular dynamics simulations to study in detail the behavior of several single-walled, armchair CNTs under stretching and bending deformations, realized by imposing appropriate boundary conditions on the CNTs. The simulation results reveal unique scaling properties of the stretching and bending stiffness with respect to the CNT radius and length, which indicate that a single-walled CNT is best modeled as a thin cylindrical shell with a cross-sectional radius equal to the CNT radius and a constant wall thickness much smaller than the CNT radius. By studying the thermal fluctuations of carbon atoms on the CNT wall, the wall thickness is determined to be about 0.45~AA~for all the single-walled CNTs studied in this thesis and correspondingly, Young's modulus is estimated to be about 8.78 TPa for these CNTs. / Master of Science / Carbon atoms are magic building blocks of our world and the basis of life on the earth, and likely in the universe too. They can also form amazing materials with dimensionalities ranging from 0 to 3. For example, carbon atoms can form soccer-ball like spherical structures called fullerenes, with 0 dimensionality. They can also form 1-dimensional tubular structures with only one wall (i.e., one layer of carbon atoms) or multiple walls, called carbon nanotubes (CNTs) that have diameters typically in the nanometer range and lengths as long as 0.5 meter. Carbon atoms also form graphene sheets, which can be regarded as 2-dimensional structures, and 3-dimensional materials including graphite and diamond. In this work, we model CNTs using the molecular dynamics simulation method, where the motion of each atom is resolved and controlled if needed. Specifically, we study CNTs under stretching by fixing one end while pulling the other end in the axial direction, or bending by pulling the middle of a CNT along the radial direction in its cross-section while fixing its two ends. By fitting the simulation results to the continuum mechanics models, we show that a CNT is best described as a thin cylindrical shell with a radius equal to the CNT radius and a wall thickness much smaller than the radius. At the end, the wall thickness of all the CNTs studied here is determined to be about $0.45times 10^{-10}$ meter and their Young's modulus is estimated to be about $8.78times 10^{12}$ Pa, confirming that CNTs are one of the strongest and stiffest materials.

Page generated in 0.0414 seconds