• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TRANSCRIPTIONAL REGULATION OF FACTORS REQUIRED FOR THE DIFFERENTIATION OF GABAERGIC MOTOR NEURONS IN THE DEVELOPING VENTRAL NERVE CORD OF CAENORHABDITIS ELEGANS

Campbell, Richard F 06 January 2017 (has links)
Development of the nervous system is a highly organized process that utilizes genetic mechanisms conserved across the animal kingdom. Components of the nervous system such as inhibitory GABAergic neural networks are common among most multicellular animals. The nematode Caenorhabditis elegans, utilizes similar genetic pathways to that of mice and humans to develop its GABAergic neural networks. These GABAergic neural networks are composed of two types of GABAergic motor neurons: the VD and DD sub-classes. The GABAergic differentiation of both these sub-classes requires the conserved transcription factor, Pitx/UNC-30. The VD sub-class is differentiated from the DD motor neurons by the expression of another transcription factor, COUP TFII/UNC-55. The transcriptional mechanisms regulating the expression of Pitx/UNC-30 and Coup TFII are unknown. We sought to determine how Pitx/UNC-30 and COUP TF-II/UNC-55 were transcriptionally regulated in an attempt to understand how mechanisms of GABAergic fate specification and class specification may be connected. We hypothesized there would be different mechanisms regulating the GABAergic differentiation and sub-class specification of the two sub-classes of GABAergic motor neurons. To test this, we dissected the transcriptional mechanisms responsible for the expression of Pitx/UNC-30 and COUP TFII/UNC-55. We found that different isoforms of the Hox cofactor Meis/UNC-62 stabilize and activate the expression of UNC-55. Furthermore, we conclude that Pitx/UNC-30 expression is regulated differently between the two motor neuron sub-classes by Meis/UNC-62, Hox-B7/MAB-5 and NeuroD/CND-1, each of which are vital to the development of different components of the nervous system in vertebrates. Our findings suggest that the GABAergic identity and the sub-class specification of neurons are under the control of multiple conserved transcription factors responsible for neuron fate determination and post mitotic identities.
2

Novel Functions of Erythropoietin Receptor Signaling

Hidalgo, Daniel 15 March 2022 (has links)
Erythroid terminal differentiation couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. I used Epor−/− mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. I found that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. Specifically, I found that high levels of EpoR signaling increase the size and shorten the cycle of early erythroblasts, which are amongst the fastest cycling somatic cells. I confirmed the effect of erythropoietin (Epo) on red cell size in human volunteers, whose mean corpuscular volume (MCV) increases following Epo administration. Our work shows that EpoR signaling alters the expected inverse relationship between cell cycle length and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress. The ability of EpoR signaling to increase cell size in rapidly cycling early erythroblasts suggests that these cells have exceptionally efficient EpoR-driven mechanisms for growth. I found evidence for this in ongoing work, where Epor−/− and Stat5−/− single-cell transcriptomes show dysregulated expression of ribosomal proteins and rRNA transcription and processing genes. Global rates of ribosomal rRNA transcription and protein synthesis increase in an EpoR dependent manner during a narrow developmental window in early ETD, coincident with the time of cell cycle shortening. Our work therefore suggests EpoR-driven regulation of ribosome biogenesis and translation orchestrating rapid cycling and cell growth during early ETD.
3

Régulation transcriptionelle du développement de l'hypothalamus chez l'amphibien

Bouyakdan, Khalil 08 1900 (has links)
Le noyau paraventriculaire (PVN) de l'hypothalamus régule une série de phénomènes physiologiques incluant l'équilibre énergétique et la pression artérielle. Nous avons identifié une cascade de facteurs de transcription qui contrôle le développement du PVN. SIM1 et OTP agissent en parallèle pour contrôler la différenciation d'au moins cinq types de neurones identifiables par la production d'OT, AVP, CRH, SS et TRH. Ces Facteurs de transcriptions contrôlent le développement des lignées CRH, AVP et OT en maintenant l'expression de Brn2 qui à son tour est nécessaire pour la différenciation terminale de ces neurones. L'analyse du transcriptome du PVN nous a permis d'identifier plusieurs gènes qui ont le potentiel de contrôler le développement du PVN. Nous voulons développer un paradigme de perte de fonction qui permettrait l'étude de ces gènes candidats sur une grande échelle. Le but de ce projet est de caractériser le PVN en développement de l'amphibien en vue de l'utilisation de ce modèle pour des études fonctionnelles. Nous avons cloné des fragments de cDNA de Sim1, OTP, Brn2, Sim2, CRH, Ot, AVP et TRH à partir de l'ARN total de Xenopus Laevis. Nous avons adapté notre technique d'hybridation in situ pour caractériser l'expression de ces gènes chez l'amphibien aux stades 33-39, 44, 51, 54, 60, et chez l'adulte. Résultats. Les Facteurs de transcription Sim1, OTP, et Brn2 commencent à être exprimés dans le PVN prospectif au stade 33. L'expression des marqueurs de différenciation terminale devient détectable entre les stades 37 et 39. De façon intéressante, le PVN occupe initialement un domaine de forme globulaire puis à partir du stade 44 s'allonge le long de l’axe dorso-ventral. Cet allongement se traduit par une organisation en colonnes des cellules du PVN que nous n'avons pas observée chez les rongeurs. Le développement du PVN est conservé chez l'amphibien dans la mesure où la relation entre l'expression des facteurs de transcription et des marqueurs de différenciation terminale est conservée. Il existe par ailleurs des différences entre la topographie des PVN des mammifères et de l'amphibien. L'organisation en colonnes de cellules pourrait correspondre à des mouvements de migration tangentielle. Nous sommes maintenant en mesure de tester la fonction des facteurs de transcription dans le PVN par l'approche d'invalidation par morpholinos. / The paraventricular nucleus PVN of the hypothalamus regulates a series of physiological phenomena including the maintenance of energetic balance and arterial blood pressure. We have previously identified a cascade of transcription factors that control the development of the PVN. Sim1 and OTP act in concert to mediate the terminal differentiation of at least five types of neurons identifiable by their production of OT, AVP, CRH, SS and TRH. These transcription factors control the development of the OT, AVP and CRH producing neurons by maintaining the expression of Brn2, which is in turn required for the terminal differentiation of these cell lines. The transcriptome analysis of the PVN allowed us to identify a handful of genes that are potentially implicated in the development of this brain structure. Our goal is to develop a loss of function paradigm that would allow a high troughput study of these candidate genes. The main goal of this project is to characterize the developing PVN in the amphibian in order to use this model in our functional studies of these genes. We have cloned fragments of cDNA of Sim1, OTP, Brn2, Sim2, CRH, TRH, AVP and OT using Xenopus laevis total RNA. We have also adapted our in situ hybridization technique to characterize the expression of these genes in stage 33-39, 44, 51, 54, 60 and adult amphibian brain. Sim1, OTP and Brn2 are expressed in the prospective PVN as soon as stage 33. The expression of the terminal differentiation markers become detectable between stages 37-39. Interestingly, the PVN is initially restricted to a more globular domain and begins to extend along the dorso-ventral axis at around stage 44. This vertical extension translates into a column organization that we do not observe in rodents. The development of the PVN is well conserved in the amphibian in the sense that the relation between the expression of the different transcription factors and the terminal differentiation markers is conserved. We can also observe some topographical differences between the mammalian and amphibian PVN. The column organization the different PVN cell types might correspond to the tangential migration that is observed in the mouse. We are now well equipped to test the function in the PVN of the known transcripton factors as well as the candidate genes previously identified in our lab using a morpholino-mediated gene knock down.
4

Régulation transcriptionelle du développement de l'hypothalamus chez l'amphibien

Bouyakdan, Khalil 08 1900 (has links)
Le noyau paraventriculaire (PVN) de l'hypothalamus régule une série de phénomènes physiologiques incluant l'équilibre énergétique et la pression artérielle. Nous avons identifié une cascade de facteurs de transcription qui contrôle le développement du PVN. SIM1 et OTP agissent en parallèle pour contrôler la différenciation d'au moins cinq types de neurones identifiables par la production d'OT, AVP, CRH, SS et TRH. Ces Facteurs de transcriptions contrôlent le développement des lignées CRH, AVP et OT en maintenant l'expression de Brn2 qui à son tour est nécessaire pour la différenciation terminale de ces neurones. L'analyse du transcriptome du PVN nous a permis d'identifier plusieurs gènes qui ont le potentiel de contrôler le développement du PVN. Nous voulons développer un paradigme de perte de fonction qui permettrait l'étude de ces gènes candidats sur une grande échelle. Le but de ce projet est de caractériser le PVN en développement de l'amphibien en vue de l'utilisation de ce modèle pour des études fonctionnelles. Nous avons cloné des fragments de cDNA de Sim1, OTP, Brn2, Sim2, CRH, Ot, AVP et TRH à partir de l'ARN total de Xenopus Laevis. Nous avons adapté notre technique d'hybridation in situ pour caractériser l'expression de ces gènes chez l'amphibien aux stades 33-39, 44, 51, 54, 60, et chez l'adulte. Résultats. Les Facteurs de transcription Sim1, OTP, et Brn2 commencent à être exprimés dans le PVN prospectif au stade 33. L'expression des marqueurs de différenciation terminale devient détectable entre les stades 37 et 39. De façon intéressante, le PVN occupe initialement un domaine de forme globulaire puis à partir du stade 44 s'allonge le long de l’axe dorso-ventral. Cet allongement se traduit par une organisation en colonnes des cellules du PVN que nous n'avons pas observée chez les rongeurs. Le développement du PVN est conservé chez l'amphibien dans la mesure où la relation entre l'expression des facteurs de transcription et des marqueurs de différenciation terminale est conservée. Il existe par ailleurs des différences entre la topographie des PVN des mammifères et de l'amphibien. L'organisation en colonnes de cellules pourrait correspondre à des mouvements de migration tangentielle. Nous sommes maintenant en mesure de tester la fonction des facteurs de transcription dans le PVN par l'approche d'invalidation par morpholinos. / The paraventricular nucleus PVN of the hypothalamus regulates a series of physiological phenomena including the maintenance of energetic balance and arterial blood pressure. We have previously identified a cascade of transcription factors that control the development of the PVN. Sim1 and OTP act in concert to mediate the terminal differentiation of at least five types of neurons identifiable by their production of OT, AVP, CRH, SS and TRH. These transcription factors control the development of the OT, AVP and CRH producing neurons by maintaining the expression of Brn2, which is in turn required for the terminal differentiation of these cell lines. The transcriptome analysis of the PVN allowed us to identify a handful of genes that are potentially implicated in the development of this brain structure. Our goal is to develop a loss of function paradigm that would allow a high troughput study of these candidate genes. The main goal of this project is to characterize the developing PVN in the amphibian in order to use this model in our functional studies of these genes. We have cloned fragments of cDNA of Sim1, OTP, Brn2, Sim2, CRH, TRH, AVP and OT using Xenopus laevis total RNA. We have also adapted our in situ hybridization technique to characterize the expression of these genes in stage 33-39, 44, 51, 54, 60 and adult amphibian brain. Sim1, OTP and Brn2 are expressed in the prospective PVN as soon as stage 33. The expression of the terminal differentiation markers become detectable between stages 37-39. Interestingly, the PVN is initially restricted to a more globular domain and begins to extend along the dorso-ventral axis at around stage 44. This vertical extension translates into a column organization that we do not observe in rodents. The development of the PVN is well conserved in the amphibian in the sense that the relation between the expression of the different transcription factors and the terminal differentiation markers is conserved. We can also observe some topographical differences between the mammalian and amphibian PVN. The column organization the different PVN cell types might correspond to the tangential migration that is observed in the mouse. We are now well equipped to test the function in the PVN of the known transcripton factors as well as the candidate genes previously identified in our lab using a morpholino-mediated gene knock down.

Page generated in 0.068 seconds