101 |
Ductility and fracture mechanisms of particulate filled thermoplasticsLi, Jian Xing January 1993 (has links)
No description available.
|
102 |
Molecular understanding of the transcrystalline zone in thermoplastic polymersNeyman, Gennady January 1994 (has links)
No description available.
|
103 |
A Morphing Extrusion Die for Manufacturing of Thermoplastic HosesGilmore, Paul 21 May 2015 (has links)
No description available.
|
104 |
BLOCK COPLOYMER FILMS USING SOLVENT VAPOR ANNEALING WITH SHEARzhang, chao 05 June 2018 (has links)
No description available.
|
105 |
Poly(Arylene) Ethers Prepared From Functionalized 3,5-Difluorotriphenylphosphine OxideSutherland, Courtney M. 23 July 2012 (has links)
No description available.
|
106 |
Structural behavior of jointed leachate collection pipesShimoga, Ramesh January 1999 (has links)
No description available.
|
107 |
Improved thermoplastic composite by alignment of vapor grown carbon fiberKuriger, Rex J. January 2000 (has links)
No description available.
|
108 |
MATHEMATICAL MODELING OF THE IN-MOLD COATING PROCESS FOR INJECTION MOLDED THERMOPLASTIC PARTSChen, Xu 05 February 2003 (has links)
No description available.
|
109 |
Interaction of Supercritical Carbon Dioxide with Quaternary-Ammonium Organoclays in the Processing of Thermoplastic Elastomer NanocompositesLiu, Jinling 08 1900 (has links)
Organically modified montmorillonite has been extensively used as nanofiller in studies of polymer layered silicate nanocomposites, promising materials for today's automotive industry because the nano-materials reduce the overall weight of vehicle. However, industrial applications have not followed suit primarily due to cost/performance issues. Supercritical carbon dioxide is promising as an aid in the production of a fully exfoliated polymer layered silicate nanocomposite but has not been fundamentally studied in this regard at present. As the first stage in studies of using supercritical carbon dioxide for aiding the production of thermoplastic elastomer nanocomposites, this thesis investigates the influence of this unique supercritical fluid on the microstructure and surface chemistry of five organically modified clays. Four alkyl-based quaternary ammonium surfactants with different number and length of chains attached and one aromatic quaternary ammonium surfactant were chosen to vary the degree of C02-philicity exhibited by the organoclay. In a high pressure batch vessel, the different organoclays were suspended in the supercritical solvent at temperatures of 50°C and 200°C and pressures of 7.6 MPa and 9.7 MPa for a fixed time and then removed after depressurization at 0.2 MPa/s or 4.8 MPa/s. The structures of these treated clays were characterized by XRD, TEM, DSC, TGA, FT -IR, and SEM, and their chemical properties were analyzed by various methods including atomic absorption spectroscopy, and contact angle measurement. The potential role of water to favor the interaction between scC02 and an organoclay was also investigated. Solute-solvent interactions plasticized the organic modifier while suspended in the supercritical fluid, which resulted in greater chain mobility and further cation exchange. The results indicate that surfactants exhibiting a paraffin-type conformation within the galleries of the clay were most likely to experience significant basal expansion, provided the tilt angle was not already close to being perpendicular to the silicate surface. For those organoclays demonstrating basal expansion, it was noted that the resulting particle size was increased due to enhanced porosity. Water proved useful in clay expansion in certain cases and primarily while operating conditions allowed the co-solvent to remain adsorbed to the clay surface. / Thesis / Master of Applied Science (MASc)
|
110 |
Structure-Process-Property Relationships of Cellulose Nanocrystal Thermoplastic Urethane CompositesFallon, Jake Jeffrey 25 October 2019 (has links)
Nanomaterials are becoming increasingly prevalent in final use products as we continue to improve our understanding of their structure and properties and optimize their processing. The useful applications for these materials extend from new drug delivery systems to improved materials for various transport industries and many more. Nanoscale materials which are commonly used include but are not limited to carbon nanotubes, graphene, silica, nanoclays, and cellulose nanocrystals. The literature presented herein aims to investigate structure-process-property relationships of cellulose nanocrystal (CNC) polymer composites. These CNC nanocomposites are unique in that they provide a dynamic mechanical response when exposed to H2O. Currently, these nanocomposite systems are most commonly solvent cast into their final geometry. In order to enable the use of these materials in more commercial processing methods such as extrusion, we must understand their inherent structure-process-property relationships. To do this, we first characterize the influence of temperature and shear orientation on the unique mechanical adaptive response. Next, the melt processability of the nanocomposite was characterized using material extrusion (MatEx) additive manufacturing (AM). Additionally, the diffusion behavior of water within the film, which controls the dynamic mechanical response, was probed to better predict the concentration dependent behavior. Finally, a literature review is presented which outlines the state of the art for melt extrusion AM of fiber filled polymer composite materials and provides insight into how we can further improve mechanical properties through further addition of composite filler materials.
The initial focus of the dissertation is on the influence of melt processing CNC thermoplastic urethane (TPU) composites and the resulting impact on the mechanical adaptive response. Dynamic mechanical analysis (DMA) fitted with a submersion clamp was used to measure the mechanical softening of the composite while submerged in water. Small angle x-ray scattering (SAXS) and polarized raman spectroscopy were used to qualify the orientation of the various CNC/TPU composite samples. The results of the orientation measurements show that solvent casting the films orient CNCs into a mostly random state and melt extrusion induces some degree of uniaxial orientation. The DMA results indicate that at the processing conditions tested, the uniaxial orientation and thermal exposure from the melt processing do not significantly impact the mechanical responsiveness of the material.
The next objective of this work was to expand upon the aforementioned learnings and determine the CNC composite material processability using MatEx. The ability to process mechanically dynamic CNC/TPU composites with a selective deposition process capable of generating complex geometries may enable new functionality and design freedom. To realize this potential, a two factor (extrusion temperature and extrusion speed) three level (240, 250 and 260 ℃/ 600, 1100 and 1600 mm/min) design of experiments (DOE) was utilized. The resulting printed parts were characterized by DMA to determine their respective mechanical adaptivity. Processing conditions did prove to have a significant impact on the mechanical adaptivity of the printed part. A correlation between applied energy and mechanical adaptivity demonstrates how increasing residence time and temperature can reduce mechanical performance. The shape fixity of the printed parts was calculated to be 80.4% and shape recovery was 44.2%. A 3D prototype part was also produced to demonstrate the unique properties of this material.
Although the understanding of the melt processing behavior of these CNC composites had been improved, a stronger understanding of the moisture diffusion behavior within the composite is required to fully realize and control their potential. Therefore, a study was undertaken to capture the diffusion behavior and correlate it to the mechanical responsive mechanism. To do this, a thermogravimetric sorption analysis (TGA-SA) instrument was used to monitor the mass uptake as a function of time exposed to a humid environment. These data were then compared to DMA data collected for the same samples exposed to a similar degree of humidity. All studies were conducted as a function of concentration in order to better elucidate the influence that percolating network structures may have on the resultant properties. Interestingly, the results show how increasing addition of CNCs results in a decrease in the rate of diffusivity, which is counter to what has been commonly hypothesized. It is hypothesized that increasing CNC content restricts the mobility of surrounding amorphous matrix material, thus increasing the resistance for diffusion of a water molecule. However, the rate of mechanical adaptation was found to increase with increasing CNC content, which is believed to be a result of the increased connectivity, enabling further transport of water molecules. / Doctor of Philosophy / Nanomaterials are becoming increasingly prevalent in final use products as we continue to improve our understanding of their structure and properties and optimize their processing. The useful applications for these materials extend from new drug delivery systems to improved materials for various transport industries and many more. The literature presented herein aims to investigate structure-process-property relationships of cellulose nanocrystal (CNC) polymer composites. These CNC nanocomposites are unique in that they provide a unique mechanical response when exposed to water. In order to enable the use of these materials in more commercial processing methods, we must understand their inherent structure-process-property relationships. The following documents multiple aspects of these unique composite materials which enables their commercial viability and scientific versatility.
|
Page generated in 0.0243 seconds