1 |
Structural basis of membrane targeting and regulation of the innate immunity adaptor TIRAP by its phosphoinositide-binding motifZhao, Xiaolin 12 July 2016 (has links)
Toll-like receptors (TLRs) are the main components of the innate immunity. Pathogen-activated TLRs trigger a cytoplasmic signaling cascade through adaptor proteins, with the first being the TIR domain-containing adaptor protein (TIRAP). TIRAP contains a TIR domain, which associates with TLRs and other adaptor proteins; and a N-terminal phosphoinositide-binding motif (PBM) that mediates the membrane recruitment of TIRAP. Upon ligand activation, TLRs are recruited to the phosphoinositide (PIP)-enriched region in the membrane, where TIRAP recruits other adaptors to the membrane to activate TLR signaling pathway. To investigate the mechanism of membrane targeting of TIRAP and the basis for its regulation, I functionally and structurally characterized TIRAP and its PBM using biophysical approaches. I show that TIRAP PBM adopts helical structural in dodecylphosphocholine (DPC) micelles and other membrane mimics. NMR studies reveal that TIRAP PBM binds PIPs following a fast exchange regime with a moderate affinity through two conserved basic termini. Mutation of these two basic regions abolishes PIPs binding without distorting the helical structure of the peptide. Solution NMR structure of TIRAP PBM exhibits a central relatively hydrophobic helix surrounded by the flexible N- and C-termini. Paramagnetic studies indicate that the helix is close to the micelle core, whereas two termini are located on the micellar surface. Nuclear spin relaxation experiments indicate that the two termini of TIRAP PBM become more ordered when bound to PIP, thus, we propose that the central helix in PBM is responsible for membrane insertion, whereas the two sets of basic residues interact with PIPs to stabilize TIRAP's membrane interaction. Phosphomimetic mutation of Thr28 to Asp (T28D) as well as phosphorylation in Thr28 inhibit TIRAP PBM's binding to phosphoinositides by distorting the central helical structure of the peptide. More importantly, TIRAP T28D disrupt its subcellular localization in vivo. Thus, phosphorylation can impair proper insertion of TIRAP at the plasma membrane through PBM and, consequently, it may represent the first signal that promotes TIRAP degradation. / Ph. D.
|
2 |
Role of Mal/TIRAP in TLR2- and TLR4-, but not TLR5-Induced Corneal InflammationWilliams, Susan R. 23 January 2010 (has links)
No description available.
|
3 |
Cellular and Biochemical Events in Toll-like Receptor SignalingBonham, Kevin Scott 04 December 2014 (has links)
In multicellular organisms, communication between cells relies on transmitting information across membrane barriers. Different cell types interrogate particular aspects of their surrounding environment through protein receptors that span membranes and upon ligand binding, trigger enzymatic signaling cascades that culminate in the activation of one or more transcription factors. Information transmission is bidirectional, as individual cells must be able to sense unique aspects of their surroundings, relay their specialized knowledge with others, and receive the collective knowledge of surrounding cells and tissues. This two-way communication is particularly important in the innate immune system, where potentially infectious organisms must be readily detected and identified, and their presence communicated to other cells in the vicinity. Because of the rapid generation time of microorganisms, delays between any of these steps - detection, information processing or information transmission - can make the difference between successful control of infection and pathogen outgrowth. For this reason, the receptors that identify potential pathogens must be able to detect pathogens wherever they are found, be exquisitely sensitive, and initiate a robust response. At the same time, the inflammatory response to infection is itself damaging. This requires that the same receptors are tightly controlled, both by modulating their sensitivity and by rapidly turning off responses through negative feedback pathways. Here, I show that the toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) plays a critical role in controlling the sensitivity of toll-like receptor (TLR) signaling. First, TIRAP controls the assembly of the myddosome, a protein complex that activates signal transduction, from both the plasma membrane and within endosomes of macrophages. Though TIRAP's role at the cell surface was previously described, its endosomal function was previously unknown. Second, TIRAP is an important target for negative regulation. After stimulation with the TLR4 ligand lipopolysaccharide (LPS), macrophages induce a state known as endotoxin tolerance, in which they are refractory for additional LPS stimulation. Many mechanisms for endotoxin tolerance have been proposed, but here I show that TIRAP is degraded in endotoxin tolerance, and that the mechanism of TIRAP degradation also has implications for viral/bacterial superinfection.
|
4 |
Investigating TLR-4 signalling in response to protein ligandsMacleod, Charlotte Victoria January 2018 (has links)
Toll-like receptor (TLR)-4 is a pattern recognition receptor (PRR) that recognises the pathogen-associated molecular pattern (PAMP) lipopolysaccharide (LPS) produced by Gram-negative bacteria. LPS binds to Myeloid differentiation 2 (MD-2)/TLR-4 heterodimers, driving their dimerisation and inducing a conformational change of the intracellular TLR-4 toll/interleukin-1 receptor (TIR) domains. The adaptor protein Myeloid differentiation primary response gene 88 (MyD88)-adaptor-like (Mal)/TIR domain-containing adaptor protein (TIRAP) then binds to the TIR domains of TLR-4 and acts as a bridge for MyD88 which goes on to form the myddosome, a large protein complex of six to eight MyD88 molecules and four Interleukin-1 receptor- associated kinase (IRAK) 4 and four IRAK1/2 molecules. This triggers a signalling cascade which results in nuclear factor (NF)-κB transcription factor activation and production of pro-inflammatory effector molecules such as the cytokine Tumour Necrosis Factor (TNF)-α. Upon activation TLR-4 is also endocytosed where it interacts with a second set of adaptor proteins TIR-domain-containing adaptor- inducing interferon (IFN)-β (TRIF)-related adaptor molecule (TRAM) and TRIF to initiate the type I IFN response. How TLR-4 dimerisation results in the formation of the oligomeric myddosome is not fully understood, but it is possible that the stoichiometry of Mal/TIRAP may be important in the formation of this protein complex. The aim of my thesis was to determine the stoichiometry of Mal/TIRAP at the plasma membrane of immortalised bone marrow derived macrophages (iBMDMs) and whether this stoichiometry changes upon stimulation with different TLR-4 ligands. To investigate Mal/TIRAP stoichiometry I first developed a viral transduction experimental cell model to visualise fluorescently labelled Mal/TIRAP. Mal/TIRAP-/- iBMDMs were lentivirally transduced with a Mal/TIRAPHALO construct. The halotag was fluorescently labelled then the cells were stimulated with TLR-4 ligands, such as LPS, fixed at different time points, then imaged. Total internal reflection fluorescence (TIRF) microscopy was used to image the plasma membrane and photobleaching experiments performed to determine Mal/TIRAP stoichiometry. I developed a computer-based analysis pipeline to analyse the resulting photobleaching data. Under resting conditions, Mal/TIRAP is present at the plasma membrane in clusters of approximately ten Mal/TIRAP molecules per cluster. After five minutes of stimulation with 10 ng/ml LPS Mal/TIRAP redistributes into cluster sizes of approximately six, twelve and much larger. After ten and fifteen minutes stimulation with 10 ng/ml LPS the clusters return to the resting size of approximately ten Mal/TIRAP molecules per cluster with a few much larger clusters remaining present. This confirms the rapid time frame within which TLR-4 signalling occurs at the plasma membrane and is consistent with myddosome stoichiometry of six MyD88 molecules or proposed super myddosomes of twelve MyD88 molecules. The computer-based analysis pipeline developed can be used to analyse any protein of interest at the plasma membrane. Protein ligands have also been found to activate TLR-4; for example allergens, such as Fel d 1 and Der p 2, as well as endogenous damage associated molecular patterns (DAMPs), such as extracellular matrix (ECM) proteins, for example fragments of fibronectin and tenascin-C. The mechanism by which these proteins interact with TLR-4 and induce signalling is unclear. Proteins from the ECM (fragments FNIII1c, FNIII13-14, FNIII9-E and FNIII9-E-14 from fibronectin and the fibrinogen-like globe (FBG) domain of tenascin-C) were tested using a transient transfection assay in HEK293 cells and shown to activate TLR-4. In conclusion, I have developed new tools and methodology to investigate how TLR-4 signals in response to LPS and DAMPs in living cells. Whether DAMP- activated TLR-4 forms similar signalling complexes to those induced by LPS will form part of a future study.
|
Page generated in 0.0212 seconds