• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling Of Dropwise Condensation On A Cylindrical Surface Including The Sweeping Effect

Ozler, Emrah Talip 01 May 2007 (has links) (PDF)
The purpose of this study was to analyze the dropwise condensation on a cylindrical surface including the sweeping effect theoretically. For this purpose, first the problem of the equilibrium shape and departure size of drops on the outer surface of a cylinder was formulated. The equations of the surface of the drop were obtained by minimizing (for a given volume) the total energy of the drop which consists of surface and gravitational energy by using the techniques of variational calculus. The departure size of the droplets on a surface at varies angle of inclinations were also determined experimentally. Drop departure size is observed to decrease up to as the surface inclination was decreased up to 90 degree and then it increased up to 180 degree. Mean base heat flux, drop departure rate, sweeping frequency, fraction of covered area, sweeping period, local heat flux and average heat flux for the dropwise condensation on a cylindrical surface including the sweeping effect is formulated and the resulting integral equation was solved by using the finite difference techniques. The results show that drop departure rate and sweeping frequency was strongly affected by the angular position and reached asymptotic value at large angular positions. Comparing the results of the average heat flux values at different diameters show that at larger diameters the average heat flux becomes larger. This is due to the increased sweeping effect at larger diameters.
2

Simulation Of Conjugate Heat Transfer Problems Using Least Squares Finite Element Method

Goktolga, Mustafa Ugur 01 October 2012 (has links) (PDF)
In this thesis study, a least-squares finite element method (LSFEM) based conjugate heat transfer solver was developed. In the mentioned solver, fluid flow and heat transfer computations were performed separately. This means that the calculated velocity values in the flow calculation part were exported to the heat transfer part to be used in the convective part of the energy equation. Incompressible Navier-Stokes equations were used in the flow simulations. In conjugate heat transfer computations, it is required to calculate the heat transfer in both flow field and solid region. In this study, conjugate behavior was accomplished in a fully coupled manner, i.e., energy equation for fluid and solid regions was solved simultaneously and no boundary conditions were defined on the fluid-solid interface. To assure that the developed solver works properly, lid driven cavity flow, backward facing step flow and thermally driven cavity flow problems were simulated in three dimensions and the findings compared well with the available data from the literature. Couette flow and thermally driven cavity flow with conjugate heat transfer in two dimensions were modeled to further validate the solver. Finally, a microchannel conjugate heat transfer problem was simulated. In the flow solution part of the microchannel problem, conservation of mass was not achieved. This problem was expected since the LSFEM has problems related to mass conservation especially in high aspect ratio channels. In order to overcome the mentioned problem, weight of continuity equation was increased by multiplying it with a constant. Weighting worked for the microchannel problem and the mass conservation issue was resolved. Obtained results for microchannel heat transfer problem were in good agreement in general with the previous experimental and numerical works. In the first computations with the solver / quadrilateral and triangular elements for two dimensional problems, hexagonal and tetrahedron elements for three dimensional problems were tried. However, since only the quadrilateral and hexagonal elements gave satisfactory results, they were used in all the above mentioned simulations.

Page generated in 0.0833 seconds