• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of TLE4 as a tumor suppressor in acute myeloid leukemia and regulator of hematopoietic and bone development

Shin, Thomas H. 06 February 2017 (has links)
The presence of AML1-ETO (RUNX1-CBF2T1), a fusion oncoprotein resulting from a t(8;21) chromosomal translocation, is a necessary but insufficient event in the development of a subset of acute myeloid leukemias (AML). Although AML1-ETO is able to block differentiation and immortalize hematopoietic stem cells, other contributory events are required for cell proliferation and leukemogenesis, suggesting that specific tumor suppressor genes may counteract the leukemic potential of AML1-ETO. In studying del(9q), one of the most common concomitant chromosomal abnormalities with t(8;21), we identified the loss of TLE4 as a key cooperating event in the development of AML1-ETO AML, leading to increased cell proliferation, blocked apoptosis and differentiation, as well as cytarabine resistance in leukemic cells. This suggested TLE4 functions as a tumor suppressor gene in AML.We found these effects are mediated by the loss of TLE4 regulation of a COX-Wnt inflammatory axis. These effects were consequently reversible by Wnt signaling and cyclooxygenase inhibition, pointing towards anti-inflammatory agents as potentially new therapeutic and adjuvant strategies for AML. While studies in Drosophila implicate TLE/Groucho as a key mediator of various signaling pathways, including receptor tyrosine kinase/Ras/MAPK, Notch, Myc, and Wnt pathways, there is surprisingly little known about the role of TLE in mammalian development. Using a Tle4 knockout (T4KO) mouse, we identified previously unknown roles for Tle4 in regulating vertebrate mammalian hematopoietic and bone development. T4KO mice manifest leukocytopenia and defective hematopoietic stem cell populations. Using serial transplantation and stromal co-culture, we find that these hematopoietic deficiencies arise due to both intrinsic dysfunction of hematopoietic stem cells as well as defective extrinsic regulation of hematopoiesis by the stem cell niche. Additionally, T4KO mice are severely runted and exhibit markedly decreased bone mineralization concomitant with defective osteoblast function and decreased mineral apposition rates. Many of the pathways regulated by TLE are aberrant in cancer, which has led to increasing studies connecting TLE with various malignancies, including synovial cell sarcoma and glioblastoma. Our findings have great implications for current understanding of TLE function in not only cancer, but also bone and hematopoietic development.
2

The influence of cell size on cytokinesis in situ and genomic interrogation of human cell size regulation

Gauvin Bourdages, Karine 12 1900 (has links)
La cellule est l’élément fondamental de la vie. Plus d’une vingtaine de trillions de cellules forment les organes et tissus de notre corps. Ces cellules sont de taille spécifique puisqu’elles ont des fonctions précises au sein de leur tissu respectif. Dans la plupart des cas, les cellules doivent proliférer en se divisant pour se renouveler et ainsi assurer le bon fonctionnement d’un organisme. La dernière étape de la division cellulaire, la cytokinèse, est exécutée par la contraction d’un anneau contractile d’actomyosine, nécessaire pour effectuer la séparation physique de la cellule en deux cellules filles. La première partie des travaux décrits dans cet ouvrage portent sur la caractérisation de la cytokinèse en utilisant, comme modèle in vivo, les cellules précurseur de la vulve (VPCs) du nématode C. elegans. Notre étude révèle que plusieurs aspects de l’anneau d’actomyosine s’ajustent en fonction de la taille de la cellule. Entre autres, la largeur de l’anneau contractile, juste avant sa constriction, s’ajuste en fonction de la longueur des VPCs. De plus, la rapidité avec laquelle l’anneau se contracte dépend de la circonférence de la cellule. Ces découvertes nous ont amené à nous demander comment la cellule régule sa taille? Les cellules en prolifération maintiennent leur taille en homéostasie en équilibrant leur taux de croissance et de division cellulaire. Afin d’interroger les gènes impliqués dans le maintien de la taille cellulaire du mammifère, nous avons utilisé la technologie CRISPR/Cas9, afin d’éliminer par délétion tous les gènes humains, à raison d’un par cellule, pour identifier ceux qui causent une augmentation ou une diminution de la taille cellulaire. Cette étude nous a permis d’identifier plusieurs gènes déjà connus régulant la croissance cellulaire. De plus, nous avons identifié un groupe de gènes, incluant TLE4 un corépresseur de la transcription que nous avons caractérisé, n’ayant jamais été associé avec une fonction de contrôle de la taille cellulaire chez les mammifères. En somme, nos travaux ont contribué à l’approfondissement des connaissances sur la division cellulaire, plus précisément la cytokinèse, et des gènes impliqués dans le maintien de la taille cellulaire. Une meilleure connaissance du fonctionnement de ces deux évènements cellulaires est essentielle puisque leur dérégulation peut entrainer plusieurs pathologies, incluant le cancer. / Cells are the fundamental building blocks of life. The human body contains over twenty trillion cells that make up the different tissues and organs of our bodies. Cells within organs are of specific sizes to perform their specialized functions. In most cases, these cells must divide to proliferate and replenish the population of cells essential for proper organism function. The final stage of cellular division, termed cytokinesis, entails the assembly and constriction of a contractile ring that drives the dramatic cell shape changes required to physically partition the cell into two daughter cells. The first part of the work presented in this thesis addresses the characterization of cytokinesis in the epithelial vulval precursor cells (VPCs) of the nematode worm C. elegans. This study principally revealed that several aspects of cytokinesis scale with cell size. For instance, I observed that the breadth of the actomyosin ring scaled with VPC length. In addition, the speed of contractile ring constriction scaled with the circumference of VPCs. These scaling events raised the more general question as to how cells regulate their size. Proliferating cells attain cell size homeostasis by balancing cell growth and cell division. In order to define the molecular regulators of size in human cells a genome-wide approach was taken. Recently developed CRISPR/Cas9 technology was used to perform the first pooled knockout screens for human cell size regulators in the NALM-6 pre-B lymphocytic cell line. These screens revealed many genes that affect the size of NALM-6 cells, a number of which were previously known to be involved in growth regulation. In addition, these screens revealed the identity of many genes with no previously established functions associated with cell size regulation. Amongst the previously unknown regulators, I characterized the function of a co-repressor of transcription, TLE4, which I showed functions as a regulator of the B-cell lineage. This work contributes to the knowledge of the mechanics of cytokinesis in C. elegans epithelial cells and of the genes that coordinate cell size in humans. These results provide insights into cell growth and division in normal cells and how these processes may be perturbed in cancer and other diseases.

Page generated in 0.0173 seconds