• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Insights into PRR-Driven SHH Signaling : Implications for Host-Microbial Interactions

Naick, Ravindra M January 2015 (has links) (PDF)
Mycobacterium are important human pathogens and their strength lies in establishing acute infections, latent infections as well as co-existing with other dreadful infectious agents like HIV. The success of mycobacterium infection often relies in its ability to evade immune-surveillance mechanisms mediated by sentinels of host immunity by modulating host signal transduction pathways and expression of immune regulatory molecules. In this scenario, the role of pattern recognition receptors (PRRs) in orchestrating host immune responses assumes central importance. Of the PRRs, the Toll-like receptors (TLRs) or intracellular surveillance receptors such as retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) govern key immune-surveillance mechanisms in recognition as well as control of mycobacterial or viral infections. The first part of this study illustrates the role of SHH signaling in macrophage induced neutrophil recruitment during mycobacterial infections. The present investigation demonstrates that, in response to mycobacterium infection, macrophages displayed robust activation of TLR2 dependent SHH signaling. By utilizing the well-documented experimental air pouch model, we show that the ability of pathogenic mycobacterium infected macrophages to recruit polymorph nuclear leukocytes (PMNs) like neutrophils to the infected site was dependent on SHH signaling. The activated SHH signaling differentially regulated the expression of proteolytic enzymes, MMP-9 and MMP-12 that would contribute to PMN migration. Interestingly, SHH-responsive krüppel-like family (KLF) of transcription factors, KLF4 and KLF5 were found to modulate these chemokine effectors to regulate neutrophil recruitment. Subsequent chapters describe novel functions of SHH signaling during RIG-I mediated anti-viral immunity and RIG-I mediated modulation of TLR2 anti-inflammatory signature in mycobacteria infected macrophages. In this perspective, we demonstrate that RIG-I ligand robustly induces the activation of SHH signaling via the phosphatidylinositide 3-kinase (PI3K) pathway in macrophages. Furthermore, we show that the sustained inhibition of PKA-GSK-3β-SUFU negative regulatory axis upon RIG-I engagement with 5'3pRNA is critical for the activation of SHH signaling. Gain or loss of function studies implicate the necessity of RIG-I triggered MAVS-TBK1 canonical axis in the inhibition of PKA-GSK-3β-SUFU negative regulatory axis that contributes to SHH signaling activation. The RIG-I activated SHH signaling drives the production of anti-viral type 1 interferons leading to the inhibition Japanese encephalitis virus (JEV) replication. Further, RIG-I-mediated anti-viral type 1 interferon production and subsequent control of viral replication suggested the involvement of two transcriptional factors, IRF3 and YY1 in the response along a SHH axis. Further, mounting evidence clearly depicts a significant cross talk among the molecular events initiated by given TLRs and RLRs like RIG-I. Clearly, these studies present an interesting challenge in delineating the events during polymicrobial infection of host immune cells like macrophages or DCs. Altogether, our results improve our understanding of mycobacteria associated confections’ and may add significantly to the current knowledge of the delicate balance that determines a successful mycobacterial infection.
2

Mechanistic And Functional Insights Into Mycobacterium Bovis BCG Triggered TLR2 Signaling : Implications For Immune Evasion Strategies

Ghorpade, Devram Sampat 07 1900 (has links) (PDF)
Mycobacteria are multifaceted pathogens capable of causing both acute disease as well as an asymptomatic latent infection. Host immune responses during mycobacterial infection involve potent cell effector functions including that of CD4+, CD8+ and γδT cells, macrophages and dendritic cells (DCs). Further, the critical regulators of protective immunity to mycobacterial infection include IFN-γ, IL-12, IL-23, TNF-α, lymphotoxins, CD40, nitric oxide and reactive oxygen species. However, the success of mycobacterial infection often relies in its ability to evade immune surveillance mechanisms mediated by sentinels of host immunity by modulating host signal transduction pathways and expression of immunoregulatory molecules. Therefore, the key to control mycobacterial growth and limit pathogenesis lies in the understanding the interactions between Mycobacterium and primary responders like macrophages and DCs. In this scenario, the role of pattern recognition receptors (PPRs) in orchestrating host immune responses assumes central importance. The cell surface receptors play crucial role in influencing overall immune responses. Of the PRRs, the Toll-like receptors (TLRs) form key immune surveillance mechanisms in recognition as well as control of mycobacterial infection. Among them, TLR2 is the primary interacting receptor on antigen presenting cells that recognize the invading mycobacteria. Mycobacterial cell wall constituents such as LAM, LM, PIM and 19-kDa protein have been shown to activate TLR2 signaling leading to proinflammatory responses. Recent reports have suggested that PE_PGRS antigens of M. tuberculosis interact with TLR2. For example, RV0754, Rv0978c, RV1917c have been implicated in modulation of human DCs. The 19-kDa lipoprotein, LpqH (Rv3763) and LprG (Rv1411c) utilize TLR2 signaling to inhibit macrophage responsiveness to IFN-γ triggered MHC class II expression and mycobacterial antigen presentation. Interestingly, recognition and amplification of pathogenic-specific signaling events play important roles in not only discriminating the invading microbes, but also in regulating explicit immune responses. In this context, integration of key signaling centers, which modulate host immunity to pathogenic mycobacterial infections, remains unexplored. In accordance to above observations, signal transduction pathways downstream to TLRs play a critical role in modulation of battery of host cells genes in terms of expression and production of immune modulatory cytokines and chemokines, recruitment of cellular machineries to site of infections etc. This suggests the decisive role for TLRs in modulation of host cell fate decisions. However, during the ensuing immunity to invading pathogens, beside TLR signaling pathways, various other signaling molecules are thought to execute specific functions in divergent cellular contexts. Recent studies from our laboratory have clearly demarcated a novel cross talk of TLR2-NOTCH1 and TLR2-Wnt signaling pathways during mycobacterial infections. The current study primary focuses on the broad range of cross talk of TLR2 and Sonic hedgehog (SHH) signaling pathways and its functional significance. The present investigation demonstrates that M. bovis BCG, a vaccine strain, triggers a robust activation of SHH signaling in macrophages compared to infection with diverse Gram-positive or Gram-negative microbes. This observation was further evidenced by the heightened SHH signaling signatures during in vivo scenario in cells /tissues from pulmonary tuberculosis (TB) individuals as well as tuberculous meningitis (TBM) patients. Furthermore, we show that the sustained TNF-α secretion by macrophages upon infection with M. bovis BCG is a critical necessity for SHH activation. Significantly, perturbation studies implicate a vital role for M. bovis BCG stimulated TLR2/PI3K/PKC/MAPK/NF-κB axis to induce TNF-α, that contributes to enhance SHH signaling. The TNF-α driven SHH signaling downregulates M. bovis BCG induced TLR2 signaling events leading to modulation of battery of genes that regulate various functions of macrophages genes like Vegf-a, Socs-3, Cox-2, Mmp-9 and M1/M2 genes. Importantly, utilizing whole-genome microRNA (miRNA) profiling, roles for specific miRNAs were identified as the molecular regulators that bring about the negative-feedback loop comprising TLR2-SHH signaling events. Thus, the current study illustrates how SHH signaling tightly regulates the kinetics and strengths of M. bovis BCG specific TLR2 responses, emphasizing a novel role for SHH signaling in host immune responses to mycobacterial infections. As described, variety of host factors contributes for ensuing effective host defenses and modulation of host cell fate decisions. Interestingly, avirulent pathogenic mycobacteria, including the vaccine strain M. bovis BCG, unlike virulent M. tuberculosis, cause extensive apoptosis of infected macrophages, which suggests a significant contribution of the apoptosis process to the initiation and subsequent amplification of innate as well as adaptive immune responses. Among various cues that could lead to apoptosis of host cells, the initiation of the apoptotic machinery by posttranscriptional mechanisms assumes significant importance. Among posttranscriptional control mechanisms, miRNAs are suggested to regulate several biological processes including immune responses. Various effectors of host immunity are known to be regulated by several miRNAs, and a prominent one among them, miRNA-155 (miR-155), often exhibits crucial roles during innate or adaptive immune responses. In this perspective, we identified a novel role of miR-155 during M. bovis BCG induced apoptosis of macrophages. The genetic and signaling perturbations data suggested that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-α). Enhanced activation of PKA signaling resulted in induced expression of the apoptotic genes as well as Caspase-3 cleavage and Cytochrome c translocation. Thus, augmented PKA signaling by M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, emphasizing a novel role for miR-155 in host immunity to mycobacterial infections. In perspective of these studies, important directives are often comprised of sequential and coordinated activation of TLR and NLR-driven signal transduction pathways, thus exhibiting foremost influence in determining the overall strength of the innate immune responses. As described, TLR2 exhibits dominant role in sensing various agonists including pathogen-associated molecular patterns (PAMPs) of microbes at the cell surface and generally considered as major effectuator of proinflammatory responses. Interestingly, NLRs like NOD1 or NOD2 often act in contrary, thus regulating anti-inflammatory responses as well as polarization of T cells towards skewed Th2 phenotype. This presents an interesting conundrum to functionality of DCs or macrophages in terms of effector functions during rapidly evolving immunological processes including effects originating from immunosuppressive effectors such as CTLA-4 or TGF-. DCs like macrophages are important sentinels of innate immunity, possesses array of PRRs that include TLRs and NOD-like receptors (NLRs). Signaling events associated with innate sensors like TLRs and NLRs often act as regulatory circuits that modulate the overall functions of DCs in terms of maturation process, cytokine or chemokine production, receptor expression, migration to secondary lymphoid organs for antigen presentation for effectuating Th polarization. TLR2, while acting as sensors for extracellular cues or endocytic network, drives signaling events in response to recognition of PAMPs including mycobacterial antigens like ESAT-6, PE_PGRS antigens, while NOD1 and NOD2 operate as cytosolic sensors initiating signaling pathways upon recognition of diaminopimelic acid (DAP) and muramyl dipeptide (MDP), components of bacterial peptidoglycan. Thus, TLRs or NOD receptors could trigger similar or contrasting immune responses by cooperative or non-cooperative sensing, consequently exhibiting immense complexity during combinatorial triggering of host DCs-PRR repertoire. In view of these observations, our current investigation comprehensively demonstrated that maturation process of human DCs were cooperatively regulated by signaling cascades initiated by engagements of TLR2, NOD1 and NOD2 receptors. Importantly, combined triggering of TLR2 and NOD receptors abolished the TGF-β or CTLA-4-mediated impairment of human DCs maturation, which required critical participation of NOTCH1-PI3K signaling cohorts. Thus, our data delineated the novel insights in modulation of macrophages and DCs effector functions by mycobacterial TLR2 or NOD agonists and broaden our understanding on the signal dynamics and integration of multiple signals from PRRs during mycobacterial infections. Altogether, our findings establish the understanding of conceptual frame work in fine tuning of TLR2 responses by SHH signaling as well as potential co-operativity among TLRs and NODs to modulate NOTCH1 dependent DCs maturation. Importantly, our study provides mechanistic and functional insights into various molecular regulators of macrophage cell fate decisions like miR-31. miR-150 and miR-155, which can fuel the search for attractive and effective drug targets and novel therapeutics to combat diseases of the hour like tuberculosis.

Page generated in 0.0826 seconds