1 |
The Role of the TM2-HAMP Junction in Control of the Signaling State of the Aspartate Chemoreceptor of E. coliWright, Gus Alan 2009 August 1900 (has links)
The mechanism of allosteric coupling between the external ligand-binding domain and the internal signaling domain of bacterial chemoreceptors is poorly understood. Genetic, biochemical, and biophysical evidence suggests that transmembrane helix 2 (TM2) undergoes a piston-like displacement of approximately 1-3 Angstroms toward the cytoplasm upon the binding of aspartate to the Tar receptor. The signal is then transmitted to the cytoplasmic signaling domain via the HAMP domain, a conserved motif found in all methyl-accepting chemotaxis proteins (MCPs) and most histidine protein kinases (HPKs). HAMP forms a parallel four-helix bundle consisting of a dimer of two amphipathic helices (AS1 and AS2) connected by a flexible linker.
The MLLT sequence between residues Arg-214, at the end of TM2, and the conserved residue Pro-219, at the beginning of AS1 of the HAMP domain (the TM2-HAMP junction), is predicted to be able to form a helical extension of TM2. We hypothesized that perturbing the native secondary structure and/or the length of the TM2-HAMP junction would disrupt the ability of HAMP to communicate the input signal from TM2 to the kinase-control domain. To test this hypothesis, we designed two experiments. First, constructs were made in which 1 to 3 Gly residues were inserted between T218 and P219. Second, Tar variants were constructed in which 1 to 9 Gly residues were inserted between R214 and P219. The results suggest that increasing the length and flexibility of the TM2-HAMP connection tends to uncouple signal propagation between the TM2 and the HAMP elements and suggests that HAMP alone causes an inhibitory effect on the cytoplasmic signaling domain.
To determine whether the predicted helical register of the MLLT sequence is an important component of the propagation of the transmembrane signal from TM2 to the HAMP domain, we added and subtracted helical residues to the MLLT sequence. The results suggest that helical register and length of the TM2-HAMP junction are essential for optimal receptor function.
|
2 |
Energy Levels and Dynamics of Tm²⁺ Doped into AMX₃ SaltsKoster, Sophie Amelia January 2014 (has links)
Divalent thulium has been doped into CsCaI₃, CsCaBr₃, CsCaCl₃ and RbCaI₃- a series of AMX₃ salts. Using previously published optical spectra, a series of parameterised energy level calculations have been performed. The calculated energy levels, optimised crystal field parameters and simulated optical absorption spectra are presented. Theoretical predictions yield excellent approximation to the experimental data.
Temperature dependent fluorescent lifetimes from the (³F₄,t₂g) and (³H₆,t₂g) excited (emitting) states have been measured using a pulsed dye laser. For CsCaBr₃ and RbCaI₃ doped with Tm²⁺, visible emission for the (³F₄,t₂g) state yields 10 K and 28 K lifetimes of 1.7 μs and 0.40 μs respectively. In both cases no emission is observed at room temperature. Considering direct multiphonon relaxation to the lower lying (³H₆,t₂g) levels, a simple energy gap law well accounts for the measured data with effective phonon energies in the range 100-200 cm⁻¹ - consistent with the phonon density of states in these low phonon energy hosts. Monitoring infrared emission from the (³H₆,t₂g) states, 14 K and 10 K lifetimes of 301 μs and 250 μs are found for CsCaBr₃ and CsCaCl₃ respectively. For CsCaBr₃ this value reduces to 270 μs at 200 K and is not quenched until 300 K, whilst for CsCaCl₃ emission is quenched by 170 K. This temperature dependent behavior is interpreted in terms of internal conversion via configurational crossing between the excited and ground state potential energy surfaces. Fitting the fluorescence lifetime data to a modified Mott equation, it is inferred that the potential barrier for non-radiative relaxation is five times larger in CsCaBr₃ compared to CsCaCl₃. This explains the fact that emission is still observable in the bromide host at room temperature.
|
Page generated in 0.0281 seconds