• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of Libyan date palm pollen and flax seed on general and specific properties of testicular and breast cancer cells

Alshibani, Yasmein Omran January 2016 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / There is increasing concern worldwide by researchers with regards to the assessing of safety and therapeutic consumption of the plants used in traditional medicine. Date palm pollen (DPP) and flax seed have been used traditionally to improve fertility in Libya. DPP extracts have shown several reproductive beneficial effects. In vivo, studies have revealed the ability of DPP to increase sperm concentrations, ameliorate the testicular toxicity induced by cadmium and lead, raise testosterone, as well as LH and FSH hormone levels. Flax seed phytochemical analysis showed lots of valuable components such as lignans and α linolenic acid to which were attributed its positive health effects like antitumor, antioxidant and protective effects against coronary heart diseases. Moreover, flax lignans have both estrogenic and antiestrogenic potential. This study was aimed at testing the effects of Libyan DPP and flax seed on the Sertoli (TM4) cell line and human breast adenocarcinoma (MCF - 7) cell line. Different concentrations (0.01, 0.1, 1, 10, 100 and 1000 μg/ml) of ethanolic extracts of DPP and flax seed, respectively, were used to assess the morphology of TM4 and MCF - 7 cells after 24 and 72 hours exposure. Mitochondrial dehydrogenase activity as a marker of cell viability was measured by MTT assay after 24 and 72 hours exposure. Apoptotic effects were assessed by flow cytometeric APO percentage assay. TM4 cell production of Inhibin - B hormone and GGT enzyme activity under the effects of DPP or flax seed was determined by use of ELISA kits. Transepithelial electrical resistance (TEER) assay were used to detect the effect of DPP or flax seed on TM4 cell monolayer integrity. Finally the plants potential phytoestrogenic activity was determined by use of E - SCREEN assay in MCF – 7 breast cancer cells. Higher concentrations of DPP significantly increased the activity of mitochondrial dehydrogenase enzyme of TM4 cells after 24 hours associated with increasing cell number as detected in a microphotograph. Flax seed concentrations less than 100 μg/ml reduced TM4 cell viability but there were no morphological changes visible after 24 hours. MCF - 7 cells viability was reduced after 24 and 72 hours treatment with DPP and flax seed. DPP concentrations beyond 1 μg/ml significantly raised the TEER of TM4 monolayer over 72 hours while flax seed treatments caused a significant increase only after 72 hours of exposure. TM4 cells GGT activity increased significantly after exposure to higher concentrations of DPP and all flax seed concentrations. Significant stimulatory effects of all the concentrations of DPP or flax seed on TM4 inhibin - B hormone productions have been detected. Apoptotic studies showed no significant changes. E - SCREEN assay resulted in significant reduction in MCF - 7 proliferation rate under the effect of low concentrations of DPP or flax seed. Higher concentrations of the plant extracts, however, stated to increase MCF – 7 cell proliferation, this exerts weak estrogenic activities. In conclusion, the main finding of this study is that DPP and flax seed showed stimulatory effects on TM4 cells proliferation. The resistivity of TM4 cells monolayer which reflect the integrity of blood – testis barrier (BTB) was also significantly increased as well as inhibin - B production and GGT enzyme activity. In addition DPP and flax seed respectively showed inhibitory effects on MCF - 7 cells viability. This study indicated that DPP or flax seed may enhance spermatogenesis through their stimulatory action on Sertoli cells. Moreover, both plants could reduce breast cancer cells viability. However, further investigations are required to elucidate the exact mechanisms behind these obtained findings.
2

Investigations on the in vitro effects of aqueous Eurycoma longifolia Jack extract on male reproductive functions

Erasmus, Nicolete January 2012 (has links)
<p>Eurycoma longifolia (Tongkat Ali / TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is also used to improve male fertility and no report&nbsp / regarding its safety has been published, this study investigated the effects of a patented, aqueous TA extract on various sperm and testicular functions. Materials and Methods This study&nbsp / encompasses two parts (part 1: on spermatozoa / part 2: on TM3-Leydig and TM4-Sertoli cells). Part 1: Semen samples of 27 patients and 13 fertile donors were divided into two groups,&nbsp / washed and swim-up prepared spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 &mu / g/ml) for 1 hour at 37&deg / C. A sample without addition of TA served as control. After incubation with TA,&nbsp / the following parameters were evaluated: viability (Eosin-Nigrosin test), total and progressive motility (CASA), acrosome reaction (triple stain technique), sperm production of reactive oxygen&nbsp / species (ROS / dihydroethidium test / DHE), sperm DNA fragmentation (TUNEL assay) and mitochondrial membrane potential (&Delta / &psi / m) (Depsipher kit). Part 2: TM3-Leydig and TM4-Sertoli cells&nbsp / incubated with different concentrations of TA (0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 &mu / g/ml) and control (without extract) for 48 and 96 hours. After incubation with TA, the following parameters were&nbsp / evaluated: viability (XTT), cell proliferation (protein assay), testosterone (testosterone ELISA test) and pyruvate (pyruvate assay). Results Part 1: For washed spermatozoa, significant&nbsp / dose-dependent trends were found&nbsp / for viability, total motility, acrosome reaction and sperm ROS production. However, these trends were only significant if the highest concentrations were included in the calculation. In the swim-up spermatozoa, ROS production of spermatozoa showed a biphasic relationship with its lowest percentage at 10 &mu / g/ml, yet, no significance could be&nbsp / observed (P=0.9505). No influence of TA could be observed for sperm DNA fragmentation nor &Delta / &psi / m.</p>
3

Investigations on the in vitro effects of aqueous Eurycoma longifolia Jack extract on male reproductive functions

Erasmus, Nicolete January 2012 (has links)
<p>Eurycoma longifolia (Tongkat Ali / TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is also used to improve male fertility and no report&nbsp / regarding its safety has been published, this study investigated the effects of a patented, aqueous TA extract on various sperm and testicular functions. Materials and Methods This study&nbsp / encompasses two parts (part 1: on spermatozoa / part 2: on TM3-Leydig and TM4-Sertoli cells). Part 1: Semen samples of 27 patients and 13 fertile donors were divided into two groups,&nbsp / washed and swim-up prepared spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 &mu / g/ml) for 1 hour at 37&deg / C. A sample without addition of TA served as control. After incubation with TA,&nbsp / the following parameters were evaluated: viability (Eosin-Nigrosin test), total and progressive motility (CASA), acrosome reaction (triple stain technique), sperm production of reactive oxygen&nbsp / species (ROS / dihydroethidium test / DHE), sperm DNA fragmentation (TUNEL assay) and mitochondrial membrane potential (&Delta / &psi / m) (Depsipher kit). Part 2: TM3-Leydig and TM4-Sertoli cells&nbsp / incubated with different concentrations of TA (0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 &mu / g/ml) and control (without extract) for 48 and 96 hours. After incubation with TA, the following parameters were&nbsp / evaluated: viability (XTT), cell proliferation (protein assay), testosterone (testosterone ELISA test) and pyruvate (pyruvate assay). Results Part 1: For washed spermatozoa, significant&nbsp / dose-dependent trends were found&nbsp / for viability, total motility, acrosome reaction and sperm ROS production. However, these trends were only significant if the highest concentrations were included in the calculation. In the swim-up spermatozoa, ROS production of spermatozoa showed a biphasic relationship with its lowest percentage at 10 &mu / g/ml, yet, no significance could be&nbsp / observed (P=0.9505). No influence of TA could be observed for sperm DNA fragmentation nor &Delta / &psi / m.</p>
4

Investigations on the in vitro effects of aqueous Eurycoma longifolia Jack extract on male reproductive functions

Erasmus, Nicolete January 2012 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Introduction: Eurycoma longifolia (Tongkat Ali; TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is also used to improve male fertility and no report regarding its safety has been published, this study investigated the effects of a patented, aqueous TA extract on various sperm and testicular functions. Materials and Methods: This study encompasses two parts (part 1: on spermatozoa; part 2: on TM3-Leydig and TM4-Sertoli cells). Part 1: Semen samples of 27 patients and 13 fertile donors were divided into two groups, washed and swim-up prepared spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 μg/ml) for 1 hour at 37°C. A sample without addition of TA served as control. After incubation with TA, the following parameters were evaluated: viability (Eosin-Nigrosin test), total and progressive motility (CASA), acrosome reaction (triple stain technique), sperm production of reactive oxygen species (ROS; dihydroethidium test; DHE), sperm DNA fragmentation (TUNEL assay) and mitochondrial membrane potential (Δψm) (Depsipher kit). Part 2: TM3-Leydig and TM4-Sertoli cells incubated with different concentrations of TA (0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50 μg/ml) and control (without extract) for 48 and 96 hours. After incubation with TA, the following parameters were evaluated: viability (XTT), cell proliferation (protein assay), testosterone (testosterone ELISA test) and pyruvate (pyruvate assay). Results Part 1: For washed spermatozoa, significant dose-dependent trends were found for viability, total motility, acrosome reaction and sperm ROS production. However, these trends were only significant if the highest concentrations were included in the calculation. In the swim-up spermatozoa, ROS production of spermatozoa showed a biphasic relationship with its lowest percentage at 10 μg/ml, yet, no significance could be observed (P=0.9505). No influence of TA could be observed for sperm DNA fragmentation nor Δψm. Part 2: The viability rates and protein production of TM3-Leydig and TM4-Sertoli cells at 48-hour exposure to TA showed increases whereas at 96-hour incubation periods viability and protein production declined especially as from concentration 25 μg/ml TA. Similar results could be seen for TM4-Sertoli cells pyruvate production. The testosterone production at 48-hour exposure marginally increased (P=0.0580) at the highest (50 μg/ml) concentration of TA. However, at 96-hour exposure to TA the testosterone production significantly (P=0.0065) increased. It is also apparent that after 96 hours the concentration of testosterone has increased [12 x 10-4 ng/ml] when compared to 48-hour exposure [6 x 10-7ng/ml] of Tongkat Ali. Conclusion: Part 1: Results indicate that the Tongkat Ali extract has no deleterious effects on sperm functions at therapeutically used concentrations (<2.5 μg/ml). Part 2: The cytotoxic effect of TA are only presented at higher concentration from 25 μg/ml. TM3-Leydig cells appears to be more resilient than TM4-Sertoli cells in viability and protein production yet at prolonged periods of exposure it is detrimental. Testosterone production only increases after 96 hours exposure to TA.

Page generated in 0.0471 seconds