• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-situ particulate-reinforcement of titanium matrix composites with borides

Jimoh, Abdulfatai 04 April 2011 (has links)
Several research efforts have been directed towards in-situ fabrication of titanium matrix composites (TMCs) from Ti and B4C powder mixtures as one of the ways to improve the physical and mechanical properties of titanium and its alloys. In this perspective, the present study reports the development of in-situ particulate reinforced titanium matrix composites from TiH2-B4C and Ti-B6O powder mixtures The relationship between densification and microstructure and mechanical properties (hardness and fracture toughness) of pure Ti and in-situ reinforced titanium matrix composites have been studied in detail using pressureless and hot-pressing techniques. Titanium hydride powder was compacted into cylindrical pellets that were used to produce pure Ti through dehydrogenation and pressureless sintering technique. Various composition of TiH2-B4C powder mixtures were initially milled using alumina balls in a planetary mill. The milling was to achieve homogeneous mixing and distribution of the ceramic partially in the TiH2 powder, as well as uniform distribution of reinforcing phases on the resulting Ti matrix. Dehydrogenation and conversion of loose powder and compacts of TiH2 powder was carried out in argon atmosphere and complete removal of hydrogen was achieved at 680 and 715oC for loose and compacted powder respectively. Pressureless sintering of pure Ti from TiH2 was carried out between 750-1400oC, while pressureless sintering and hot pressing of TiH2-B4C was carried out in the temperature range1100-1400oC using 30MPa for hot pressed samples in argon atmosphere. Different sintering times were considered. The microstructure and phase composition of the sintered and hot-pressed materials were characterized using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Densities of the sintered and hotpressed materials were measured to determine the extent of densification, while Vickers hardness and indentation fracture toughness were used to measure the mechanical properties of the sintered and hot-pressed materials. Pure Ti from TiH2 showed higher densification of above 99% of theoretical density compared to literature where lower densification and swelling was observed. Its Vickers hardness is higher than that of commercial Ti sintered under the same conditions. Titanium matrix composites (TMCs) with different volume content of in-situ formed reinforcements (TiB + TiC) were successfully produced. The amount of reinforcements formed increases with increased amount of B4C used in the starting powder mixtures, while the amount of needle-type TiB decrease and size and amount of blocky-type TiB increase with increasing volume fraction of TiB. Dense materials and improved Vickers hardness were achieved by the hot-pressed composites especially at 1400oC compared to the pressureless sintered composites under the same conditions and to the relevant literature. TMCs produced in this study show higher Vickers hardness compared to available data in the literature. The hardness was found to depend on the volume content of the reinforcing phases. However, the fracture toughness obtained is low (5.3MPa.m1/2) in comparison to pure Ti but is comparable with reported data in the literature. The mechanisms leading to the achievement of improved densification and higher hardness and the reasons for lower fracture toughness with different sintering temperature and composition of reinforcements in the composites are critically analysed. It has been shown that pure Ti can be pressureless sintered using TiH2 and reinforced Ti matrix composites with improved densification and mechanical properties can be produced from TiH2-B4C powder mixtures. Further work on the comprehensive study of the mechanical properties of these composites would enhance the industrial potential of using these materials and the processing route to produce economically feasible titanium matrix composites
2

Removal of arsenic and perchlorate from water by the EC/EF process using a TMCS-modified tubular ceramic membrane

Yang, Shih-hong 30 June 2011 (has links)
Arsenic and perchlorate are two types of emerging contaminants commonly found in various water bodies worldwide. Therefore, the development of effective removal technologies has become an important issue today. To this end, the following research studies were conducted. First, trimethylchlorosilane (TMCS) was used for the surface modification of a laboratory-prepared outside-in tubular TiO2/Al2O3 composite membrane aiming at enhancing the filtration performance of the said membrane layer. Second, the TMCS-modified tubular ceramic membrane coupled with the simultaneous electrocoagulation/ electrofiltration (EC/EF) process was tested and evaluated their combined performance in the remediation of arsenic- and perchlorate-spiked waters and one actual As-contaminated groundwater. In this research, the results of a preliminary electrocoagulation study have indicated that aluminum outperformed iron as the anode material. Thus, aluminum was selected as the sacrificial anode for the EC/EF tests throughout this work. In the course of various EC/EF testing, the removal efficiencies of the target contaminant in the test water specimens were compared for the tubular TiO2/Al2O3 composite membranes with and without surface modification. Also evaluated included the permeate flux, unit mass of target contaminant removed, and relevant power consumption. Though surface modification might not yield a better removal efficiency of the concerned contaminant, it gave rise to a greater permeate flux resulting in a greater removed mass of the contaminant for each of the synthetic wastewaters. Meanwhile, lower power consumption was found as compared with the case of no surface modification. As for the actual As-contaminated groundwater, the optimal EC/EF conditions for the tubular composite membrane without surface modification could low the As concentration to meet the local irrigation water quality criteria.

Page generated in 0.0118 seconds